MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem5 Structured version   Visualization version   GIF version

Theorem chordthmlem5 25426
Description: If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 PQ 2 . This follows from two uses of chordthmlem3 25424 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 PQ 2 = (QM 2 + BM 2 ) (QM 2 + PM 2 ) = BM 2 PM 2 , which equals PA · PB by chordthmlem4 25425. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem5.A (𝜑𝐴 ∈ ℂ)
chordthmlem5.B (𝜑𝐵 ∈ ℂ)
chordthmlem5.Q (𝜑𝑄 ∈ ℂ)
chordthmlem5.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem5.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem5.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem5 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))

Proof of Theorem chordthmlem5
StepHypRef Expression
1 chordthmlem5.Q . . . . . . 7 (𝜑𝑄 ∈ ℂ)
2 chordthmlem5.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 chordthmlem5.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
42, 3addcld 10653 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
54halfcld 11874 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
61, 5subcld 10990 . . . . . 6 (𝜑 → (𝑄 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
76abscld 14792 . . . . 5 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
87recnd 10662 . . . 4 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
98sqcld 13508 . . 3 (𝜑 → ((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
103, 5subcld 10990 . . . . . 6 (𝜑 → (𝐵 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
1110abscld 14792 . . . . 5 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
1211recnd 10662 . . . 4 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
1312sqcld 13508 . . 3 (𝜑 → ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
14 chordthmlem5.P . . . . . . . 8 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 unitssre 12881 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
16 chordthmlem5.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ (0[,]1))
1715, 16sseldi 3916 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
1817recnd 10662 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1918, 2mulcld 10654 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
20 1cnd 10629 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
2120, 18subcld 10990 . . . . . . . . . 10 (𝜑 → (1 − 𝑋) ∈ ℂ)
2221, 3mulcld 10654 . . . . . . . . 9 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2319, 22addcld 10653 . . . . . . . 8 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2414, 23eqeltrd 2893 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
2524, 5subcld 10990 . . . . . 6 (𝜑 → (𝑃 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
2625abscld 14792 . . . . 5 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
2726recnd 10662 . . . 4 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
2827sqcld 13508 . . 3 (𝜑 → ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
299, 13, 28pnpcand 11027 . 2 (𝜑 → ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
30 0red 10637 . . . 4 (𝜑 → 0 ∈ ℝ)
31 eqidd 2802 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) = ((𝐴 + 𝐵) / 2))
322mul02d 10831 . . . . . 6 (𝜑 → (0 · 𝐴) = 0)
3320subid1d 10979 . . . . . . . 8 (𝜑 → (1 − 0) = 1)
3433oveq1d 7154 . . . . . . 7 (𝜑 → ((1 − 0) · 𝐵) = (1 · 𝐵))
353mulid2d 10652 . . . . . . 7 (𝜑 → (1 · 𝐵) = 𝐵)
3634, 35eqtrd 2836 . . . . . 6 (𝜑 → ((1 − 0) · 𝐵) = 𝐵)
3732, 36oveq12d 7157 . . . . 5 (𝜑 → ((0 · 𝐴) + ((1 − 0) · 𝐵)) = (0 + 𝐵))
383addid2d 10834 . . . . 5 (𝜑 → (0 + 𝐵) = 𝐵)
3937, 38eqtr2d 2837 . . . 4 (𝜑𝐵 = ((0 · 𝐴) + ((1 − 0) · 𝐵)))
40 chordthmlem5.ABequidistQ . . . 4 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
412, 3, 1, 30, 31, 39, 40chordthmlem3 25424 . . 3 (𝜑 → ((abs‘(𝐵𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)))
422, 3, 1, 17, 31, 14, 40chordthmlem3 25424 . . 3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4341, 42oveq12d 7157 . 2 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))))
442, 3, 16, 31, 14chordthmlem4 25425 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4529, 43, 443eqtr4rd 2847 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863   / cdiv 11290  2c2 11684  [,]cicc 12733  cexp 13429  abscabs 14589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152
This theorem is referenced by:  chordthm  25427  chordthmALT  41636
  Copyright terms: Public domain W3C validator