MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem5 Structured version   Visualization version   GIF version

Theorem chordthmlem5 26202
Description: If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 PQ 2 . This follows from two uses of chordthmlem3 26200 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 PQ 2 = (QM 2 + BM 2 ) (QM 2 + PM 2 ) = BM 2 PM 2 , which equals PA · PB by chordthmlem4 26201. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem5.A (𝜑𝐴 ∈ ℂ)
chordthmlem5.B (𝜑𝐵 ∈ ℂ)
chordthmlem5.Q (𝜑𝑄 ∈ ℂ)
chordthmlem5.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem5.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem5.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem5 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))

Proof of Theorem chordthmlem5
StepHypRef Expression
1 chordthmlem5.Q . . . . . . 7 (𝜑𝑄 ∈ ℂ)
2 chordthmlem5.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 chordthmlem5.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
42, 3addcld 11181 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
54halfcld 12405 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
61, 5subcld 11519 . . . . . 6 (𝜑 → (𝑄 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
76abscld 15328 . . . . 5 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
87recnd 11190 . . . 4 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
98sqcld 14056 . . 3 (𝜑 → ((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
103, 5subcld 11519 . . . . . 6 (𝜑 → (𝐵 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
1110abscld 15328 . . . . 5 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
1211recnd 11190 . . . 4 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
1312sqcld 14056 . . 3 (𝜑 → ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
14 chordthmlem5.P . . . . . . . 8 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 unitssre 13423 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
16 chordthmlem5.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ (0[,]1))
1715, 16sselid 3947 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
1817recnd 11190 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1918, 2mulcld 11182 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
20 1cnd 11157 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
2120, 18subcld 11519 . . . . . . . . . 10 (𝜑 → (1 − 𝑋) ∈ ℂ)
2221, 3mulcld 11182 . . . . . . . . 9 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2319, 22addcld 11181 . . . . . . . 8 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2414, 23eqeltrd 2838 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
2524, 5subcld 11519 . . . . . 6 (𝜑 → (𝑃 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
2625abscld 15328 . . . . 5 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
2726recnd 11190 . . . 4 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
2827sqcld 14056 . . 3 (𝜑 → ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
299, 13, 28pnpcand 11556 . 2 (𝜑 → ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
30 0red 11165 . . . 4 (𝜑 → 0 ∈ ℝ)
31 eqidd 2738 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) = ((𝐴 + 𝐵) / 2))
322mul02d 11360 . . . . . 6 (𝜑 → (0 · 𝐴) = 0)
3320subid1d 11508 . . . . . . . 8 (𝜑 → (1 − 0) = 1)
3433oveq1d 7377 . . . . . . 7 (𝜑 → ((1 − 0) · 𝐵) = (1 · 𝐵))
353mulid2d 11180 . . . . . . 7 (𝜑 → (1 · 𝐵) = 𝐵)
3634, 35eqtrd 2777 . . . . . 6 (𝜑 → ((1 − 0) · 𝐵) = 𝐵)
3732, 36oveq12d 7380 . . . . 5 (𝜑 → ((0 · 𝐴) + ((1 − 0) · 𝐵)) = (0 + 𝐵))
383addid2d 11363 . . . . 5 (𝜑 → (0 + 𝐵) = 𝐵)
3937, 38eqtr2d 2778 . . . 4 (𝜑𝐵 = ((0 · 𝐴) + ((1 − 0) · 𝐵)))
40 chordthmlem5.ABequidistQ . . . 4 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
412, 3, 1, 30, 31, 39, 40chordthmlem3 26200 . . 3 (𝜑 → ((abs‘(𝐵𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)))
422, 3, 1, 17, 31, 14, 40chordthmlem3 26200 . . 3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4341, 42oveq12d 7380 . 2 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))))
442, 3, 16, 31, 14chordthmlem4 26201 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4529, 43, 443eqtr4rd 2788 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6501  (class class class)co 7362  cc 11056  cr 11057  0cc0 11058  1c1 11059   + caddc 11061   · cmul 11063  cmin 11392   / cdiv 11819  2c2 12215  [,]cicc 13274  cexp 13974  abscabs 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-ef 15957  df-sin 15959  df-cos 15960  df-pi 15962  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-mulg 18880  df-cntz 19104  df-cmn 19571  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928
This theorem is referenced by:  chordthm  26203  chordthmALT  43289
  Copyright terms: Public domain W3C validator