![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chordthmlem5 | Structured version Visualization version GIF version |
Description: If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 − PQ 2 . This follows from two uses of chordthmlem3 26339 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 − PQ 2 = (QM 2 + BM 2 ) − (QM 2 + PM 2 ) = BM 2 − PM 2 , which equals PA · PB by chordthmlem4 26340. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem5.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem5.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem5.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem5.X | ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) |
chordthmlem5.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
chordthmlem5.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
Ref | Expression |
---|---|
chordthmlem5 | ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthmlem5.Q | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
2 | chordthmlem5.A | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | chordthmlem5.B | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 2, 3 | addcld 11233 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
5 | 4 | halfcld 12457 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
6 | 1, 5 | subcld 11571 | . . . . . 6 ⊢ (𝜑 → (𝑄 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
7 | 6 | abscld 15383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
8 | 7 | recnd 11242 | . . . 4 ⊢ (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
9 | 8 | sqcld 14109 | . . 3 ⊢ (𝜑 → ((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
10 | 3, 5 | subcld 11571 | . . . . . 6 ⊢ (𝜑 → (𝐵 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
11 | 10 | abscld 15383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
12 | 11 | recnd 11242 | . . . 4 ⊢ (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
13 | 12 | sqcld 14109 | . . 3 ⊢ (𝜑 → ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
14 | chordthmlem5.P | . . . . . . . 8 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
15 | unitssre 13476 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
16 | chordthmlem5.X | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) | |
17 | 15, 16 | sselid 3981 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
18 | 17 | recnd 11242 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
19 | 18, 2 | mulcld 11234 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
20 | 1cnd 11209 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ∈ ℂ) | |
21 | 20, 18 | subcld 11571 | . . . . . . . . . 10 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
22 | 21, 3 | mulcld 11234 | . . . . . . . . 9 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
23 | 19, 22 | addcld 11233 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
24 | 14, 23 | eqeltrd 2834 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
25 | 24, 5 | subcld 11571 | . . . . . 6 ⊢ (𝜑 → (𝑃 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
26 | 25 | abscld 15383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
27 | 26 | recnd 11242 | . . . 4 ⊢ (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
28 | 27 | sqcld 14109 | . . 3 ⊢ (𝜑 → ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
29 | 9, 13, 28 | pnpcand 11608 | . 2 ⊢ (𝜑 → ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
30 | 0red 11217 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
31 | eqidd 2734 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) = ((𝐴 + 𝐵) / 2)) | |
32 | 2 | mul02d 11412 | . . . . . 6 ⊢ (𝜑 → (0 · 𝐴) = 0) |
33 | 20 | subid1d 11560 | . . . . . . . 8 ⊢ (𝜑 → (1 − 0) = 1) |
34 | 33 | oveq1d 7424 | . . . . . . 7 ⊢ (𝜑 → ((1 − 0) · 𝐵) = (1 · 𝐵)) |
35 | 3 | mullidd 11232 | . . . . . . 7 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
36 | 34, 35 | eqtrd 2773 | . . . . . 6 ⊢ (𝜑 → ((1 − 0) · 𝐵) = 𝐵) |
37 | 32, 36 | oveq12d 7427 | . . . . 5 ⊢ (𝜑 → ((0 · 𝐴) + ((1 − 0) · 𝐵)) = (0 + 𝐵)) |
38 | 3 | addlidd 11415 | . . . . 5 ⊢ (𝜑 → (0 + 𝐵) = 𝐵) |
39 | 37, 38 | eqtr2d 2774 | . . . 4 ⊢ (𝜑 → 𝐵 = ((0 · 𝐴) + ((1 − 0) · 𝐵))) |
40 | chordthmlem5.ABequidistQ | . . . 4 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
41 | 2, 3, 1, 30, 31, 39, 40 | chordthmlem3 26339 | . . 3 ⊢ (𝜑 → ((abs‘(𝐵 − 𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2))) |
42 | 2, 3, 1, 17, 31, 14, 40 | chordthmlem3 26339 | . . 3 ⊢ (𝜑 → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
43 | 41, 42 | oveq12d 7427 | . 2 ⊢ (𝜑 → (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2)) = ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))) |
44 | 2, 3, 16, 31, 14 | chordthmlem4 26340 | . 2 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
45 | 29, 43, 44 | 3eqtr4rd 2784 | 1 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 ℝcr 11109 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 − cmin 11444 / cdiv 11871 2c2 12267 [,]cicc 13327 ↑cexp 14027 abscabs 15181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 df-pi 16016 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-limc 25383 df-dv 25384 df-log 26065 |
This theorem is referenced by: chordthm 26342 chordthmALT 43694 |
Copyright terms: Public domain | W3C validator |