MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem5 Structured version   Visualization version   GIF version

Theorem chordthmlem5 26092
Description: If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 PQ 2 . This follows from two uses of chordthmlem3 26090 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 PQ 2 = (QM 2 + BM 2 ) (QM 2 + PM 2 ) = BM 2 PM 2 , which equals PA · PB by chordthmlem4 26091. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem5.A (𝜑𝐴 ∈ ℂ)
chordthmlem5.B (𝜑𝐵 ∈ ℂ)
chordthmlem5.Q (𝜑𝑄 ∈ ℂ)
chordthmlem5.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem5.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem5.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem5 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))

Proof of Theorem chordthmlem5
StepHypRef Expression
1 chordthmlem5.Q . . . . . . 7 (𝜑𝑄 ∈ ℂ)
2 chordthmlem5.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 chordthmlem5.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
42, 3addcld 11095 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
54halfcld 12319 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
61, 5subcld 11433 . . . . . 6 (𝜑 → (𝑄 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
76abscld 15247 . . . . 5 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
87recnd 11104 . . . 4 (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
98sqcld 13963 . . 3 (𝜑 → ((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
103, 5subcld 11433 . . . . . 6 (𝜑 → (𝐵 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
1110abscld 15247 . . . . 5 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
1211recnd 11104 . . . 4 (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
1312sqcld 13963 . . 3 (𝜑 → ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
14 chordthmlem5.P . . . . . . . 8 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 unitssre 13332 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
16 chordthmlem5.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ (0[,]1))
1715, 16sselid 3930 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
1817recnd 11104 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1918, 2mulcld 11096 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
20 1cnd 11071 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
2120, 18subcld 11433 . . . . . . . . . 10 (𝜑 → (1 − 𝑋) ∈ ℂ)
2221, 3mulcld 11096 . . . . . . . . 9 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2319, 22addcld 11095 . . . . . . . 8 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2414, 23eqeltrd 2837 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
2524, 5subcld 11433 . . . . . 6 (𝜑 → (𝑃 − ((𝐴 + 𝐵) / 2)) ∈ ℂ)
2625abscld 15247 . . . . 5 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℝ)
2726recnd 11104 . . . 4 (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℂ)
2827sqcld 13963 . . 3 (𝜑 → ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ)
299, 13, 28pnpcand 11470 . 2 (𝜑 → ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
30 0red 11079 . . . 4 (𝜑 → 0 ∈ ℝ)
31 eqidd 2737 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) = ((𝐴 + 𝐵) / 2))
322mul02d 11274 . . . . . 6 (𝜑 → (0 · 𝐴) = 0)
3320subid1d 11422 . . . . . . . 8 (𝜑 → (1 − 0) = 1)
3433oveq1d 7352 . . . . . . 7 (𝜑 → ((1 − 0) · 𝐵) = (1 · 𝐵))
353mulid2d 11094 . . . . . . 7 (𝜑 → (1 · 𝐵) = 𝐵)
3634, 35eqtrd 2776 . . . . . 6 (𝜑 → ((1 − 0) · 𝐵) = 𝐵)
3732, 36oveq12d 7355 . . . . 5 (𝜑 → ((0 · 𝐴) + ((1 − 0) · 𝐵)) = (0 + 𝐵))
383addid2d 11277 . . . . 5 (𝜑 → (0 + 𝐵) = 𝐵)
3937, 38eqtr2d 2777 . . . 4 (𝜑𝐵 = ((0 · 𝐴) + ((1 − 0) · 𝐵)))
40 chordthmlem5.ABequidistQ . . . 4 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
412, 3, 1, 30, 31, 39, 40chordthmlem3 26090 . . 3 (𝜑 → ((abs‘(𝐵𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)))
422, 3, 1, 17, 31, 14, 40chordthmlem3 26090 . . 3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4341, 42oveq12d 7355 . 2 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))))
442, 3, 16, 31, 14chordthmlem4 26091 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))
4529, 43, 443eqtr4rd 2787 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  cmin 11306   / cdiv 11733  2c2 12129  [,]cicc 13183  cexp 13883  abscabs 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137  df-log 25818
This theorem is referenced by:  chordthm  26093  chordthmALT  42883
  Copyright terms: Public domain W3C validator