![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rerest | GIF version |
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
tgioo2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
rerest.2 | ⊢ 𝑅 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
rerest | ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerest.2 | . . . 4 ⊢ 𝑅 = (topGen‘ran (,)) | |
2 | tgioo2.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
3 | 2 | tgioo2 14738 | . . . 4 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
4 | 1, 3 | eqtri 2214 | . . 3 ⊢ 𝑅 = (𝐽 ↾t ℝ) |
5 | 4 | oveq1i 5929 | . 2 ⊢ (𝑅 ↾t 𝐴) = ((𝐽 ↾t ℝ) ↾t 𝐴) |
6 | 2 | cnfldtop 14720 | . . 3 ⊢ 𝐽 ∈ Top |
7 | reex 8008 | . . 3 ⊢ ℝ ∈ V | |
8 | restabs 14354 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽 ↾t ℝ) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
9 | 6, 7, 8 | mp3an13 1339 | . 2 ⊢ (𝐴 ⊆ ℝ → ((𝐽 ↾t ℝ) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
10 | 5, 9 | eqtr2id 2239 | 1 ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ran crn 4661 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 (,)cioo 9957 ↾t crest 12853 TopOpenctopn 12854 topGenctg 12868 ℂfldccnfld 14055 Topctop 14176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-fz 10078 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-rest 12855 df-topn 12856 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 df-top 14177 df-topon 14190 df-topsp 14210 df-bases 14222 df-xms 14518 df-ms 14519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |