MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem5 Structured version   Visualization version   GIF version

Theorem 2sqlem5 27481
Description: Lemma for 2sq 27489. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem5.3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
2sqlem5.4 (𝜑𝑃𝑆)
Assertion
Ref Expression
2sqlem5 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem5
Dummy variables 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3 (𝜑𝑃𝑆)
2 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
322sqlem2 27477 . . 3 (𝑃𝑆 ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
41, 3sylib 218 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
5 2sqlem5.3 . . 3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
622sqlem2 27477 . . 3 ((𝑁 · 𝑃) ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
75, 6sylib 218 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
8 reeanv 3227 . . 3 (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
9 reeanv 3227 . . . . 5 (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
10 2sqlem5.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ ℕ)
12 2sqlem5.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
1312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 ∈ ℙ)
14 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑥 ∈ ℤ)
15 simprlr 780 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑦 ∈ ℤ)
16 simplrl 777 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑝 ∈ ℤ)
17 simprll 779 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑞 ∈ ℤ)
18 simprrr 782 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
19 simprrl 781 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 = ((𝑝↑2) + (𝑞↑2)))
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 27480 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁𝑆)
2120expr 456 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ (𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2221rexlimdvva 3211 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
239, 22biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2423rexlimdvva 3211 . . 3 (𝜑 → (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
258, 24biimtrrid 243 . 2 (𝜑 → ((∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
264, 7, 25mp2and 699 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431   + caddc 11156   · cmul 11158  cn 12264  2c2 12319  cz 12611  cexp 14099  abscabs 15270  cprime 16705  ℤ[i]cgz 16963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-gz 16964
This theorem is referenced by:  2sqlem6  27482
  Copyright terms: Public domain W3C validator