Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem5 Structured version   Visualization version   GIF version

Theorem 2sqlem5 26006
 Description: Lemma for 2sq 26014. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem5.3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
2sqlem5.4 (𝜑𝑃𝑆)
Assertion
Ref Expression
2sqlem5 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem5
Dummy variables 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3 (𝜑𝑃𝑆)
2 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
322sqlem2 26002 . . 3 (𝑃𝑆 ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
41, 3sylib 221 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
5 2sqlem5.3 . . 3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
622sqlem2 26002 . . 3 ((𝑁 · 𝑃) ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
75, 6sylib 221 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
8 reeanv 3320 . . 3 (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
9 reeanv 3320 . . . . 5 (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
10 2sqlem5.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ ℕ)
12 2sqlem5.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
1312ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 ∈ ℙ)
14 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑥 ∈ ℤ)
15 simprlr 779 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑦 ∈ ℤ)
16 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑝 ∈ ℤ)
17 simprll 778 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑞 ∈ ℤ)
18 simprrr 781 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
19 simprrl 780 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 = ((𝑝↑2) + (𝑞↑2)))
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 26005 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁𝑆)
2120expr 460 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ (𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2221rexlimdvva 3253 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
239, 22syl5bir 246 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2423rexlimdvva 3253 . . 3 (𝜑 → (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
258, 24syl5bir 246 . 2 (𝜑 → ((∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
264, 7, 25mp2and 698 1 (𝜑𝑁𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ↦ cmpt 5110  ran crn 5520  ‘cfv 6324  (class class class)co 7135   + caddc 10529   · cmul 10531  ℕcn 11625  2c2 11680  ℤcz 11969  ↑cexp 13425  abscabs 14585  ℙcprime 16005  ℤ[i]cgz 16255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-gz 16256 This theorem is referenced by:  2sqlem6  26007
 Copyright terms: Public domain W3C validator