MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem4 Structured version   Visualization version   GIF version

Theorem 2sqlem4 26256
Description: Lemma for 2sqlem5 26257. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
Assertion
Ref Expression
2sqlem4 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem5.1 . . . 4 (𝜑𝑁 ∈ ℕ)
32adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
4 2sqlem5.2 . . . 4 (𝜑𝑃 ∈ ℙ)
54adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
6 2sqlem4.3 . . . 4 (𝜑𝐴 ∈ ℤ)
76adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐴 ∈ ℤ)
8 2sqlem4.4 . . . 4 (𝜑𝐵 ∈ ℤ)
98adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
10 2sqlem4.5 . . . 4 (𝜑𝐶 ∈ ℤ)
1110adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
12 2sqlem4.6 . . . 4 (𝜑𝐷 ∈ ℤ)
1312adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
14 2sqlem4.7 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
1514adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
16 2sqlem4.8 . . . 4 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
1716adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
18 simpr 488 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 26255 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁𝑆)
202adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
214adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
226znegcld 12249 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
2322adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → -𝐴 ∈ ℤ)
248adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
2510adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
2612adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
276zcnd 12248 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
28 sqneg 13653 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2927, 28syl 17 . . . . . 6 (𝜑 → (-𝐴↑2) = (𝐴↑2))
3029oveq1d 7206 . . . . 5 (𝜑 → ((-𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐵↑2)))
3114, 30eqtr4d 2774 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3231adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3316adantr 484 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
3412zcnd 12248 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3527, 34mulneg1d 11250 . . . . . . 7 (𝜑 → (-𝐴 · 𝐷) = -(𝐴 · 𝐷))
3635oveq2d 7207 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) + -(𝐴 · 𝐷)))
3710, 8zmulcld 12253 . . . . . . . 8 (𝜑 → (𝐶 · 𝐵) ∈ ℤ)
3837zcnd 12248 . . . . . . 7 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
396, 12zmulcld 12253 . . . . . . . 8 (𝜑 → (𝐴 · 𝐷) ∈ ℤ)
4039zcnd 12248 . . . . . . 7 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
4138, 40negsubd 11160 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + -(𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4236, 41eqtrd 2771 . . . . 5 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4342breq2d 5051 . . . 4 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) ↔ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
4443biimpar 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)))
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 26255 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁𝑆)
46 prmz 16195 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
474, 46syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
48 zsqcl 13665 . . . . . . . 8 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
4910, 48syl 17 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℤ)
502nnzd 12246 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
5149, 50zmulcld 12253 . . . . . 6 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℤ)
52 zsqcl 13665 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
536, 52syl 17 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℤ)
5451, 53zsubcld 12252 . . . . 5 (𝜑 → (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ)
55 dvdsmul1 15802 . . . . 5 ((𝑃 ∈ ℤ ∧ (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ) → 𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5647, 54, 55syl2anc 587 . . . 4 (𝜑𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5710, 6zmulcld 12253 . . . . . . . . 9 (𝜑 → (𝐶 · 𝐴) ∈ ℤ)
5857zcnd 12248 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5958sqcld 13679 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴)↑2) ∈ ℂ)
6038sqcld 13679 . . . . . . 7 (𝜑 → ((𝐶 · 𝐵)↑2) ∈ ℂ)
6140sqcld 13679 . . . . . . 7 (𝜑 → ((𝐴 · 𝐷)↑2) ∈ ℂ)
6259, 60, 61pnpcand 11191 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)))
6310zcnd 12248 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
6463, 27sqmuld 13693 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
658zcnd 12248 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
6663, 65sqmuld 13693 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐵)↑2) = ((𝐶↑2) · (𝐵↑2)))
6764, 66oveq12d 7209 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
6863sqcld 13679 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
6953zcnd 12248 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
7065sqcld 13679 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
7168, 69, 70adddid 10822 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
7267, 71eqtr4d 2774 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))))
732nncnd 11811 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7447zcnd 12248 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
7573, 74mulcomd 10819 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
7614, 75eqtr3d 2773 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝑃 · 𝑁))
7776oveq2d 7207 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = ((𝐶↑2) · (𝑃 · 𝑁)))
7868, 74, 73mul12d 11006 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · (𝑃 · 𝑁)) = (𝑃 · ((𝐶↑2) · 𝑁)))
7977, 78eqtrd 2771 . . . . . . . . 9 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (𝑃 · ((𝐶↑2) · 𝑁)))
8072, 79eqtrd 2771 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (𝑃 · ((𝐶↑2) · 𝑁)))
8127, 34sqmuld 13693 . . . . . . . . . . . 12 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
8234sqcld 13679 . . . . . . . . . . . . 13 (𝜑 → (𝐷↑2) ∈ ℂ)
8369, 82mulcomd 10819 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (𝐷↑2)) = ((𝐷↑2) · (𝐴↑2)))
8481, 83eqtrd 2771 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐷↑2) · (𝐴↑2)))
8564, 84oveq12d 7209 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8649zcnd 12248 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
8786, 82, 69adddird 10823 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8885, 87eqtr4d 2774 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
8916oveq1d 7206 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
9088, 89eqtr4d 2774 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (𝑃 · (𝐴↑2)))
9180, 90oveq12d 7209 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9251zcnd 12248 . . . . . . . 8 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℂ)
9374, 92, 69subdid 11253 . . . . . . 7 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9491, 93eqtr4d 2774 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
9562, 94eqtr3d 2773 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
96 subsq 13743 . . . . . 6 (((𝐶 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐷) ∈ ℂ) → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9738, 40, 96syl2anc 587 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9895, 97eqtr3d 2773 . . . 4 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9956, 98breqtrd 5065 . . 3 (𝜑𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10037, 39zaddcld 12251 . . . 4 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ)
10137, 39zsubcld 12252 . . . 4 (𝜑 → ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ)
102 euclemma 16233 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ ∧ ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ) → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
1034, 100, 101, 102syl3anc 1373 . . 3 (𝜑 → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
10499, 103mpbid 235 . 2 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10519, 45, 104mpjaodan 959 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112   class class class wbr 5039  cmpt 5120  ran crn 5537  cfv 6358  (class class class)co 7191  cc 10692   + caddc 10697   · cmul 10699  cmin 11027  -cneg 11028  cn 11795  2c2 11850  cz 12141  cexp 13600  abscabs 14762  cdvds 15778  cprime 16191  ℤ[i]cgz 16445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779  df-gcd 16017  df-prm 16192  df-gz 16446
This theorem is referenced by:  2sqlem5  26257
  Copyright terms: Public domain W3C validator