MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem4 Structured version   Visualization version   GIF version

Theorem 2sqlem4 26569
Description: Lemma for 2sqlem5 26570. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
Assertion
Ref Expression
2sqlem4 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem5.1 . . . 4 (𝜑𝑁 ∈ ℕ)
32adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
4 2sqlem5.2 . . . 4 (𝜑𝑃 ∈ ℙ)
54adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
6 2sqlem4.3 . . . 4 (𝜑𝐴 ∈ ℤ)
76adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐴 ∈ ℤ)
8 2sqlem4.4 . . . 4 (𝜑𝐵 ∈ ℤ)
98adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
10 2sqlem4.5 . . . 4 (𝜑𝐶 ∈ ℤ)
1110adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
12 2sqlem4.6 . . . 4 (𝜑𝐷 ∈ ℤ)
1312adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
14 2sqlem4.7 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
1514adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
16 2sqlem4.8 . . . 4 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
1716adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
18 simpr 485 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 26568 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁𝑆)
202adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
214adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
226znegcld 12428 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
2322adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → -𝐴 ∈ ℤ)
248adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
2510adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
2612adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
276zcnd 12427 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
28 sqneg 13836 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2927, 28syl 17 . . . . . 6 (𝜑 → (-𝐴↑2) = (𝐴↑2))
3029oveq1d 7290 . . . . 5 (𝜑 → ((-𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐵↑2)))
3114, 30eqtr4d 2781 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3231adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3316adantr 481 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
3412zcnd 12427 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3527, 34mulneg1d 11428 . . . . . . 7 (𝜑 → (-𝐴 · 𝐷) = -(𝐴 · 𝐷))
3635oveq2d 7291 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) + -(𝐴 · 𝐷)))
3710, 8zmulcld 12432 . . . . . . . 8 (𝜑 → (𝐶 · 𝐵) ∈ ℤ)
3837zcnd 12427 . . . . . . 7 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
396, 12zmulcld 12432 . . . . . . . 8 (𝜑 → (𝐴 · 𝐷) ∈ ℤ)
4039zcnd 12427 . . . . . . 7 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
4138, 40negsubd 11338 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + -(𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4236, 41eqtrd 2778 . . . . 5 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4342breq2d 5086 . . . 4 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) ↔ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
4443biimpar 478 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)))
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 26568 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁𝑆)
46 prmz 16380 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
474, 46syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
48 zsqcl 13848 . . . . . . . 8 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
4910, 48syl 17 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℤ)
502nnzd 12425 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
5149, 50zmulcld 12432 . . . . . 6 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℤ)
52 zsqcl 13848 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
536, 52syl 17 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℤ)
5451, 53zsubcld 12431 . . . . 5 (𝜑 → (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ)
55 dvdsmul1 15987 . . . . 5 ((𝑃 ∈ ℤ ∧ (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ) → 𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5647, 54, 55syl2anc 584 . . . 4 (𝜑𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5710, 6zmulcld 12432 . . . . . . . . 9 (𝜑 → (𝐶 · 𝐴) ∈ ℤ)
5857zcnd 12427 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5958sqcld 13862 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴)↑2) ∈ ℂ)
6038sqcld 13862 . . . . . . 7 (𝜑 → ((𝐶 · 𝐵)↑2) ∈ ℂ)
6140sqcld 13862 . . . . . . 7 (𝜑 → ((𝐴 · 𝐷)↑2) ∈ ℂ)
6259, 60, 61pnpcand 11369 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)))
6310zcnd 12427 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
6463, 27sqmuld 13876 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
658zcnd 12427 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
6663, 65sqmuld 13876 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐵)↑2) = ((𝐶↑2) · (𝐵↑2)))
6764, 66oveq12d 7293 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
6863sqcld 13862 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
6953zcnd 12427 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
7065sqcld 13862 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
7168, 69, 70adddid 10999 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
7267, 71eqtr4d 2781 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))))
732nncnd 11989 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7447zcnd 12427 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
7573, 74mulcomd 10996 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
7614, 75eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝑃 · 𝑁))
7776oveq2d 7291 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = ((𝐶↑2) · (𝑃 · 𝑁)))
7868, 74, 73mul12d 11184 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · (𝑃 · 𝑁)) = (𝑃 · ((𝐶↑2) · 𝑁)))
7977, 78eqtrd 2778 . . . . . . . . 9 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (𝑃 · ((𝐶↑2) · 𝑁)))
8072, 79eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (𝑃 · ((𝐶↑2) · 𝑁)))
8127, 34sqmuld 13876 . . . . . . . . . . . 12 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
8234sqcld 13862 . . . . . . . . . . . . 13 (𝜑 → (𝐷↑2) ∈ ℂ)
8369, 82mulcomd 10996 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (𝐷↑2)) = ((𝐷↑2) · (𝐴↑2)))
8481, 83eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐷↑2) · (𝐴↑2)))
8564, 84oveq12d 7293 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8649zcnd 12427 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
8786, 82, 69adddird 11000 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8885, 87eqtr4d 2781 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
8916oveq1d 7290 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
9088, 89eqtr4d 2781 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (𝑃 · (𝐴↑2)))
9180, 90oveq12d 7293 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9251zcnd 12427 . . . . . . . 8 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℂ)
9374, 92, 69subdid 11431 . . . . . . 7 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9491, 93eqtr4d 2781 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
9562, 94eqtr3d 2780 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
96 subsq 13926 . . . . . 6 (((𝐶 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐷) ∈ ℂ) → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9738, 40, 96syl2anc 584 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9895, 97eqtr3d 2780 . . . 4 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9956, 98breqtrd 5100 . . 3 (𝜑𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10037, 39zaddcld 12430 . . . 4 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ)
10137, 39zsubcld 12431 . . . 4 (𝜑 → ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ)
102 euclemma 16418 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ ∧ ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ) → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
1034, 100, 101, 102syl3anc 1370 . . 3 (𝜑 → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
10499, 103mpbid 231 . 2 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10519, 45, 104mpjaodan 956 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  2c2 12028  cz 12319  cexp 13782  abscabs 14945  cdvds 15963  cprime 16376  ℤ[i]cgz 16630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-gz 16631
This theorem is referenced by:  2sqlem5  26570
  Copyright terms: Public domain W3C validator