![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjoml3i | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
pjoml3i | ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | choccli 28880 | . . 3 ⊢ (⊥‘𝐴) ∈ Cℋ |
3 | pjoml2.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | choccli 28880 | . . 3 ⊢ (⊥‘𝐵) ∈ Cℋ |
5 | 2, 4 | pjoml2i 29158 | . 2 ⊢ ((⊥‘𝐴) ⊆ (⊥‘𝐵) → ((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘𝐵)) |
6 | 3, 1 | chsscon3i 29034 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝐵)) |
7 | eqcom 2787 | . . 3 ⊢ ((⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) = 𝐵 ↔ 𝐵 = (⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))))) | |
8 | 2 | choccli 28880 | . . . . . . 7 ⊢ (⊥‘(⊥‘𝐴)) ∈ Cℋ |
9 | 8, 4 | chincli 29033 | . . . . . 6 ⊢ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)) ∈ Cℋ |
10 | 1, 9 | chdmj2i 29055 | . . . . 5 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) = (𝐴 ∩ (⊥‘((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) |
11 | 2, 3 | chdmm4i 29053 | . . . . . 6 ⊢ (⊥‘((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘𝐴) ∨ℋ 𝐵) |
12 | 11 | ineq2i 4076 | . . . . 5 ⊢ (𝐴 ∩ (⊥‘((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) = (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
13 | 10, 12 | eqtri 2804 | . . . 4 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) = (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
14 | 13 | eqeq1i 2785 | . . 3 ⊢ ((⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) = 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵) |
15 | 2, 9 | chjcli 29030 | . . . 4 ⊢ ((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))) ∈ Cℋ |
16 | 3, 15 | chcon2i 29037 | . . 3 ⊢ (𝐵 = (⊥‘((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘𝐵)) |
17 | 7, 14, 16 | 3bitr3i 293 | . 2 ⊢ ((𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵 ↔ ((⊥‘𝐴) ∨ℋ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘𝐵)) |
18 | 5, 6, 17 | 3imtr4i 284 | 1 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∩ cin 3830 ⊆ wss 3831 ‘cfv 6193 (class class class)co 6982 Cℋ cch 28500 ⊥cort 28501 ∨ℋ chj 28504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-inf2 8904 ax-cc 9661 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 ax-hilex 28570 ax-hfvadd 28571 ax-hvcom 28572 ax-hvass 28573 ax-hv0cl 28574 ax-hvaddid 28575 ax-hfvmul 28576 ax-hvmulid 28577 ax-hvmulass 28578 ax-hvdistr1 28579 ax-hvdistr2 28580 ax-hvmul0 28581 ax-hfi 28650 ax-his1 28653 ax-his2 28654 ax-his3 28655 ax-his4 28656 ax-hcompl 28773 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-omul 7916 df-er 8095 df-map 8214 df-pm 8215 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-fi 8676 df-sup 8707 df-inf 8708 df-oi 8775 df-card 9168 df-acn 9171 df-cda 9394 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-ioo 12564 df-ico 12566 df-icc 12567 df-fz 12715 df-fzo 12856 df-fl 12983 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-clim 14712 df-rlim 14713 df-sum 14910 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-rest 16558 df-topn 16559 df-0g 16577 df-gsum 16578 df-topgen 16579 df-pt 16580 df-prds 16583 df-xrs 16637 df-qtop 16642 df-imas 16643 df-xps 16645 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-mulg 18024 df-cntz 18230 df-cmn 18680 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-fbas 20259 df-fg 20260 df-cnfld 20263 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cld 21346 df-ntr 21347 df-cls 21348 df-nei 21425 df-cn 21554 df-cnp 21555 df-lm 21556 df-haus 21642 df-tx 21889 df-hmeo 22082 df-fil 22173 df-fm 22265 df-flim 22266 df-flf 22267 df-xms 22648 df-ms 22649 df-tms 22650 df-cfil 23576 df-cau 23577 df-cmet 23578 df-grpo 28062 df-gid 28063 df-ginv 28064 df-gdiv 28065 df-ablo 28114 df-vc 28128 df-nv 28161 df-va 28164 df-ba 28165 df-sm 28166 df-0v 28167 df-vs 28168 df-nmcv 28169 df-ims 28170 df-dip 28270 df-ssp 28291 df-ph 28382 df-cbn 28433 df-hnorm 28539 df-hba 28540 df-hvsub 28542 df-hlim 28543 df-hcau 28544 df-sh 28778 df-ch 28792 df-oc 28823 df-ch0 28824 df-shs 28881 df-chj 28883 |
This theorem is referenced by: pjoml3 29185 |
Copyright terms: Public domain | W3C validator |