![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5ndvds6 | Structured version Visualization version GIF version |
Description: 5 does not divide 6. (Contributed by AV, 8-Sep-2025.) |
Ref | Expression |
---|---|
5ndvds6 | ⊢ ¬ 5 ∥ 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12384 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1nn0 12574 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | 1nn 12309 | . 2 ⊢ 1 ∈ ℕ | |
4 | 5cn 12386 | . . . . 5 ⊢ 5 ∈ ℂ | |
5 | 4 | mulridi 11297 | . . . 4 ⊢ (5 · 1) = 5 |
6 | 5 | oveq1i 7461 | . . 3 ⊢ ((5 · 1) + 1) = (5 + 1) |
7 | 5p1e6 12445 | . . 3 ⊢ (5 + 1) = 6 | |
8 | 6, 7 | eqtri 2768 | . 2 ⊢ ((5 · 1) + 1) = 6 |
9 | 1lt5 12478 | . 2 ⊢ 1 < 5 | |
10 | 1, 2, 3, 8, 9 | ndvdsi 16478 | 1 ⊢ ¬ 5 ∥ 6 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 class class class wbr 5167 (class class class)co 7451 1c1 11188 + caddc 11190 · cmul 11192 5c5 12356 6c6 12357 ∥ cdvds 16319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fz 13579 df-seq 14070 df-exp 14130 df-cj 15165 df-re 15166 df-im 15167 df-sqrt 15301 df-abs 15302 df-dvds 16320 |
This theorem is referenced by: minusmodnep2tmod 47276 |
Copyright terms: Public domain | W3C validator |