![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem5b | Structured version Visualization version GIF version |
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.) |
Ref | Expression |
---|---|
baerlem3.v | ⊢ 𝑉 = (Base‘𝑊) |
baerlem3.m | ⊢ − = (-g‘𝑊) |
baerlem3.o | ⊢ 0 = (0g‘𝑊) |
baerlem3.s | ⊢ ⊕ = (LSSum‘𝑊) |
baerlem3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
baerlem3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
baerlem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
baerlem3.c | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
baerlem3.d | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
baerlem3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
baerlem3.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
baerlem5a.p | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
baerlem5b | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baerlem3.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
2 | baerlem3.m | . 2 ⊢ − = (-g‘𝑊) | |
3 | baerlem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
4 | baerlem3.s | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | baerlem3.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | baerlem3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | baerlem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | baerlem3.c | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
9 | baerlem3.d | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
10 | baerlem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | baerlem3.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
12 | baerlem5a.p | . 2 ⊢ + = (+g‘𝑊) | |
13 | eqid 2737 | . 2 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
14 | eqid 2737 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
15 | eqid 2737 | . 2 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
16 | eqid 2737 | . 2 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
17 | eqid 2737 | . 2 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
18 | eqid 2737 | . 2 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
19 | eqid 2737 | . 2 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | baerlem5blem2 41709 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3963 ∩ cin 3965 {csn 4634 {cpr 4636 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 invgcminusg 18974 -gcsg 18975 LSSumclsm 19676 LSpanclspn 20996 LVecclvec 21128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20757 df-lmod 20886 df-lss 20957 df-lsp 20997 df-lvec 21129 |
This theorem is referenced by: baerlem5bmN 41714 baerlem5abmN 41715 mapdh6lem2N 41731 hdmap1l6lem2 41805 |
Copyright terms: Public domain | W3C validator |