Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5b Structured version   Visualization version   GIF version

Theorem baerlem5b 37791
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5b (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5b
StepHypRef Expression
1 baerlem3.v . 2 𝑉 = (Base‘𝑊)
2 baerlem3.m . 2 = (-g𝑊)
3 baerlem3.o . 2 0 = (0g𝑊)
4 baerlem3.s . 2 = (LSSum‘𝑊)
5 baerlem3.n . 2 𝑁 = (LSpan‘𝑊)
6 baerlem3.w . 2 (𝜑𝑊 ∈ LVec)
7 baerlem3.x . 2 (𝜑𝑋𝑉)
8 baerlem3.c . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
9 baerlem3.d . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
10 baerlem3.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
11 baerlem3.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
12 baerlem5a.p . 2 + = (+g𝑊)
13 eqid 2826 . 2 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2826 . 2 (Scalar‘𝑊) = (Scalar‘𝑊)
15 eqid 2826 . 2 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
16 eqid 2826 . 2 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
17 eqid 2826 . 2 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
18 eqid 2826 . 2 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
19 eqid 2826 . 2 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19baerlem5blem2 37788 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1658  wcel 2166  wne 3000  cdif 3796  cin 3798  {csn 4398  {cpr 4400  cfv 6124  (class class class)co 6906  Basecbs 16223  +gcplusg 16306  Scalarcsca 16309   ·𝑠 cvsca 16310  0gc0g 16454  invgcminusg 17778  -gcsg 17779  LSSumclsm 18401  LSpanclspn 19331  LVecclvec 19462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-tpos 7618  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-0g 16456  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-subg 17943  df-cntz 18101  df-lsm 18403  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-drng 19106  df-lmod 19222  df-lss 19290  df-lsp 19332  df-lvec 19463
This theorem is referenced by:  baerlem5bmN  37793  baerlem5abmN  37794  mapdh6lem2N  37810  hdmap1l6lem2  37884
  Copyright terms: Public domain W3C validator