Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5b Structured version   Visualization version   GIF version

Theorem baerlem5b 40228
Description: An equality that holds when 𝑋, π‘Œ, 𝑍 are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Baseβ€˜π‘Š)
baerlem3.m βˆ’ = (-gβ€˜π‘Š)
baerlem3.o 0 = (0gβ€˜π‘Š)
baerlem3.s βŠ• = (LSSumβ€˜π‘Š)
baerlem3.n 𝑁 = (LSpanβ€˜π‘Š)
baerlem3.w (πœ‘ β†’ π‘Š ∈ LVec)
baerlem3.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
baerlem3.c (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
baerlem3.d (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
baerlem3.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
baerlem3.z (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
baerlem5a.p + = (+gβ€˜π‘Š)
Assertion
Ref Expression
baerlem5b (πœ‘ β†’ (π‘β€˜{(π‘Œ + 𝑍)}) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ + 𝑍))}) βŠ• (π‘β€˜{𝑋}))))

Proof of Theorem baerlem5b
StepHypRef Expression
1 baerlem3.v . 2 𝑉 = (Baseβ€˜π‘Š)
2 baerlem3.m . 2 βˆ’ = (-gβ€˜π‘Š)
3 baerlem3.o . 2 0 = (0gβ€˜π‘Š)
4 baerlem3.s . 2 βŠ• = (LSSumβ€˜π‘Š)
5 baerlem3.n . 2 𝑁 = (LSpanβ€˜π‘Š)
6 baerlem3.w . 2 (πœ‘ β†’ π‘Š ∈ LVec)
7 baerlem3.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑉)
8 baerlem3.c . 2 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
9 baerlem3.d . 2 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
10 baerlem3.y . 2 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
11 baerlem3.z . 2 (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
12 baerlem5a.p . 2 + = (+gβ€˜π‘Š)
13 eqid 2733 . 2 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
14 eqid 2733 . 2 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
15 eqid 2733 . 2 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
16 eqid 2733 . 2 (+gβ€˜(Scalarβ€˜π‘Š)) = (+gβ€˜(Scalarβ€˜π‘Š))
17 eqid 2733 . 2 (-gβ€˜(Scalarβ€˜π‘Š)) = (-gβ€˜(Scalarβ€˜π‘Š))
18 eqid 2733 . 2 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
19 eqid 2733 . 2 (invgβ€˜(Scalarβ€˜π‘Š)) = (invgβ€˜(Scalarβ€˜π‘Š))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19baerlem5blem2 40225 1 (πœ‘ β†’ (π‘β€˜{(π‘Œ + 𝑍)}) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ + 𝑍))}) βŠ• (π‘β€˜{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   βˆ– cdif 3911   ∩ cin 3913  {csn 4590  {cpr 4592  β€˜cfv 6500  (class class class)co 7361  Basecbs 17091  +gcplusg 17141  Scalarcsca 17144   ·𝑠 cvsca 17145  0gc0g 17329  invgcminusg 18757  -gcsg 18758  LSSumclsm 19424  LSpanclspn 20476  LVecclvec 20607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-grp 18759  df-minusg 18760  df-sbg 18761  df-subg 18933  df-cntz 19105  df-lsm 19426  df-cmn 19572  df-abl 19573  df-mgp 19905  df-ur 19922  df-ring 19974  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-drng 20221  df-lmod 20367  df-lss 20437  df-lsp 20477  df-lvec 20608
This theorem is referenced by:  baerlem5bmN  40230  baerlem5abmN  40231  mapdh6lem2N  40247  hdmap1l6lem2  40321
  Copyright terms: Public domain W3C validator