| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem5b | Structured version Visualization version GIF version | ||
| Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.) |
| Ref | Expression |
|---|---|
| baerlem3.v | ⊢ 𝑉 = (Base‘𝑊) |
| baerlem3.m | ⊢ − = (-g‘𝑊) |
| baerlem3.o | ⊢ 0 = (0g‘𝑊) |
| baerlem3.s | ⊢ ⊕ = (LSSum‘𝑊) |
| baerlem3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| baerlem3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| baerlem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| baerlem3.c | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| baerlem3.d | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| baerlem3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| baerlem3.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| baerlem5a.p | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| baerlem5b | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baerlem3.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | baerlem3.m | . 2 ⊢ − = (-g‘𝑊) | |
| 3 | baerlem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
| 4 | baerlem3.s | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 5 | baerlem3.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | baerlem3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | baerlem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | baerlem3.c | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 9 | baerlem3.d | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 10 | baerlem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 11 | baerlem3.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 12 | baerlem5a.p | . 2 ⊢ + = (+g‘𝑊) | |
| 13 | eqid 2730 | . 2 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 14 | eqid 2730 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 15 | eqid 2730 | . 2 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 16 | eqid 2730 | . 2 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 17 | eqid 2730 | . 2 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
| 18 | eqid 2730 | . 2 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 19 | eqid 2730 | . 2 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | baerlem5blem2 41701 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3913 ∩ cin 3915 {csn 4591 {cpr 4593 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 invgcminusg 18872 -gcsg 18873 LSSumclsm 19570 LSpanclspn 20883 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cntz 19255 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 |
| This theorem is referenced by: baerlem5bmN 41706 baerlem5abmN 41707 mapdh6lem2N 41723 hdmap1l6lem2 41797 |
| Copyright terms: Public domain | W3C validator |