![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0ff | Structured version Visualization version GIF version |
Description: The function πΉ is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
dchrisum0f.x | β’ (π β π β π·) |
dchrisum0flb.r | β’ (π β π:(Baseβπ)βΆβ) |
Ref | Expression |
---|---|
dchrisum0ff | β’ (π β πΉ:ββΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13943 | . . . 4 β’ ((π β§ π β β) β (1...π) β Fin) | |
2 | dvdsssfz1 16266 | . . . . 5 β’ (π β β β {π β β β£ π β₯ π} β (1...π)) | |
3 | 2 | adantl 481 | . . . 4 β’ ((π β§ π β β) β {π β β β£ π β₯ π} β (1...π)) |
4 | 1, 3 | ssfid 9271 | . . 3 β’ ((π β§ π β β) β {π β β β£ π β₯ π} β Fin) |
5 | dchrisum0flb.r | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) | |
6 | 5 | ad2antrr 723 | . . . 4 β’ (((π β§ π β β) β§ π β {π β β β£ π β₯ π}) β π:(Baseβπ)βΆβ) |
7 | rpvmasum.a | . . . . . . . 8 β’ (π β π β β) | |
8 | 7 | nnnn0d 12537 | . . . . . . 7 β’ (π β π β β0) |
9 | rpvmasum.z | . . . . . . . 8 β’ π = (β€/nβ€βπ) | |
10 | eqid 2731 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
11 | rpvmasum.l | . . . . . . . 8 β’ πΏ = (β€RHomβπ) | |
12 | 9, 10, 11 | znzrhfo 21323 | . . . . . . 7 β’ (π β β0 β πΏ:β€βontoβ(Baseβπ)) |
13 | fof 6805 | . . . . . . 7 β’ (πΏ:β€βontoβ(Baseβπ) β πΏ:β€βΆ(Baseβπ)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 β’ (π β πΏ:β€βΆ(Baseβπ)) |
15 | 14 | adantr 480 | . . . . 5 β’ ((π β§ π β β) β πΏ:β€βΆ(Baseβπ)) |
16 | elrabi 3677 | . . . . . 6 β’ (π β {π β β β£ π β₯ π} β π β β) | |
17 | 16 | nnzd 12590 | . . . . 5 β’ (π β {π β β β£ π β₯ π} β π β β€) |
18 | ffvelcdm 7083 | . . . . 5 β’ ((πΏ:β€βΆ(Baseβπ) β§ π β β€) β (πΏβπ) β (Baseβπ)) | |
19 | 15, 17, 18 | syl2an 595 | . . . 4 β’ (((π β§ π β β) β§ π β {π β β β£ π β₯ π}) β (πΏβπ) β (Baseβπ)) |
20 | 6, 19 | ffvelcdmd 7087 | . . 3 β’ (((π β§ π β β) β§ π β {π β β β£ π β₯ π}) β (πβ(πΏβπ)) β β) |
21 | 4, 20 | fsumrecl 15685 | . 2 β’ ((π β§ π β β) β Ξ£π β {π β β β£ π β₯ π} (πβ(πΏβπ)) β β) |
22 | dchrisum0f.f | . . 3 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
23 | breq2 5152 | . . . . . . 7 β’ (π = π β (π β₯ π β π β₯ π)) | |
24 | 23 | rabbidv 3439 | . . . . . 6 β’ (π = π β {π β β β£ π β₯ π} = {π β β β£ π β₯ π}) |
25 | 24 | sumeq1d 15652 | . . . . 5 β’ (π = π β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
26 | 2fveq3 6896 | . . . . . 6 β’ (π£ = π β (πβ(πΏβπ£)) = (πβ(πΏβπ))) | |
27 | 26 | cbvsumv 15647 | . . . . 5 β’ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π β {π β β β£ π β₯ π} (πβ(πΏβπ)) |
28 | 25, 27 | eqtrdi 2787 | . . . 4 β’ (π = π β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π β {π β β β£ π β₯ π} (πβ(πΏβπ))) |
29 | 28 | cbvmptv 5261 | . . 3 β’ (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) = (π β β β¦ Ξ£π β {π β β β£ π β₯ π} (πβ(πΏβπ))) |
30 | 22, 29 | eqtri 2759 | . 2 β’ πΉ = (π β β β¦ Ξ£π β {π β β β£ π β₯ π} (πβ(πΏβπ))) |
31 | 21, 30 | fmptd 7115 | 1 β’ (π β πΉ:ββΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 βΆwf 6539 βontoβwfo 6541 βcfv 6543 (class class class)co 7412 βcr 11113 1c1 11115 βcn 12217 β0cn0 12477 β€cz 12563 ...cfz 13489 Ξ£csu 15637 β₯ cdvds 16202 Basecbs 17149 0gc0g 17390 β€RHomczrh 21269 β€/nβ€czn 21272 DChrcdchr 26972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-ec 8709 df-qs 8713 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-dvds 16203 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-imas 17459 df-qus 17460 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-nsg 19041 df-eqg 19042 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-rhm 20364 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-lsp 20728 df-sra 20931 df-rgmod 20932 df-lidl 20933 df-rsp 20934 df-2idl 21007 df-cnfld 21146 df-zring 21219 df-zrh 21273 df-zn 21276 |
This theorem is referenced by: dchrisum0flblem2 27249 dchrisum0fno1 27251 |
Copyright terms: Public domain | W3C validator |