MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0ff Structured version   Visualization version   GIF version

Theorem dchrisum0ff 25545
Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Assertion
Ref Expression
dchrisum0ff (𝜑𝐹:ℕ⟶ℝ)
Distinct variable groups:   𝑞,𝑏,𝑣   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0ff
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13024 . . . 4 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
2 dvdsssfz1 15376 . . . . 5 (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ⊆ (1...𝑛))
32adantl 474 . . . 4 ((𝜑𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ⊆ (1...𝑛))
4 ssfi 8421 . . . 4 (((1...𝑛) ∈ Fin ∧ {𝑞 ∈ ℕ ∣ 𝑞𝑛} ⊆ (1...𝑛)) → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ∈ Fin)
51, 3, 4syl2anc 580 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ∈ Fin)
6 dchrisum0flb.r . . . . 5 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
76ad2antrr 718 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ)
8 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 11637 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
10 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
11 eqid 2798 . . . . . . . 8 (Base‘𝑍) = (Base‘𝑍)
12 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
1310, 11, 12znzrhfo 20214 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
14 fof 6330 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
159, 13, 143syl 18 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑍))
1615adantr 473 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍))
17 elrabi 3550 . . . . . 6 (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} → 𝑚 ∈ ℕ)
1817nnzd 11768 . . . . 5 (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} → 𝑚 ∈ ℤ)
19 ffvelrn 6582 . . . . 5 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
2016, 18, 19syl2an 590 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → (𝐿𝑚) ∈ (Base‘𝑍))
217, 20ffvelrnd 6585 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → (𝑋‘(𝐿𝑚)) ∈ ℝ)
225, 21fsumrecl 14803 . 2 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)) ∈ ℝ)
23 dchrisum0f.f . . 3 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
24 breq2 4846 . . . . . . 7 (𝑏 = 𝑛 → (𝑞𝑏𝑞𝑛))
2524rabbidv 3372 . . . . . 6 (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞𝑏} = {𝑞 ∈ ℕ ∣ 𝑞𝑛})
2625sumeq1d 14769 . . . . 5 (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑣)))
27 2fveq3 6415 . . . . . 6 (𝑣 = 𝑚 → (𝑋‘(𝐿𝑣)) = (𝑋‘(𝐿𝑚)))
2827cbvsumv 14764 . . . . 5 Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚))
2926, 28syl6eq 2848 . . . 4 (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
3029cbvmptv 4942 . . 3 (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
3123, 30eqtri 2820 . 2 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
3222, 31fmptd 6609 1 (𝜑𝐹:ℕ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  {crab 3092  wss 3768   class class class wbr 4842  cmpt 4921  wf 6096  ontowfo 6098  cfv 6100  (class class class)co 6877  Fincfn 8194  cr 10222  1c1 10224  cn 11311  0cn0 11577  cz 11663  ...cfz 12577  Σcsu 14754  cdvds 15316  Basecbs 16181  0gc0g 16412  ℤRHomczrh 20167  ℤ/nczn 20170  DChrcdchr 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-inf2 8787  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301  ax-addf 10302  ax-mulf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-isom 6109  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-tpos 7589  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-ec 7983  df-qs 7987  df-map 8096  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-sup 8589  df-inf 8590  df-oi 8656  df-card 9050  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-z 11664  df-dec 11781  df-uz 11928  df-rp 12072  df-fz 12578  df-fzo 12718  df-seq 13053  df-exp 13112  df-hash 13368  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-sum 14755  df-dvds 15317  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-0g 16414  df-imas 16480  df-qus 16481  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mulg 17854  df-subg 17901  df-nsg 17902  df-eqg 17903  df-ghm 17968  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-oppr 18936  df-rnghom 19030  df-subrg 19093  df-lmod 19180  df-lss 19248  df-lsp 19290  df-sra 19492  df-rgmod 19493  df-lidl 19494  df-rsp 19495  df-2idl 19552  df-cnfld 20066  df-zring 20138  df-zrh 20171  df-zn 20174
This theorem is referenced by:  dchrisum0flblem2  25547  dchrisum0fno1  25549
  Copyright terms: Public domain W3C validator