Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrisum0ff | Structured version Visualization version GIF version |
Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0flb.r | ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
Ref | Expression |
---|---|
dchrisum0ff | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13691 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) | |
2 | dvdsssfz1 16025 | . . . . 5 ⊢ (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) |
4 | 1, 3 | ssfid 9020 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ∈ Fin) |
5 | dchrisum0flb.r | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) | |
6 | 5 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ) |
7 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nnnn0d 12293 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
9 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
10 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
11 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
12 | 9, 10, 11 | znzrhfo 20753 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑍)) |
13 | fof 6686 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍)) |
16 | elrabi 3620 | . . . . . 6 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℕ) | |
17 | 16 | nnzd 12424 | . . . . 5 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℤ) |
18 | ffvelrn 6956 | . . . . 5 ⊢ ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ (Base‘𝑍)) | |
19 | 15, 17, 18 | syl2an 596 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝐿‘𝑚) ∈ (Base‘𝑍)) |
20 | 6, 19 | ffvelrnd 6959 | . . 3 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
21 | 4, 20 | fsumrecl 15444 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
22 | dchrisum0f.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
23 | breq2 5083 | . . . . . . 7 ⊢ (𝑏 = 𝑛 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝑛)) | |
24 | 23 | rabbidv 3413 | . . . . . 6 ⊢ (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) |
25 | 24 | sumeq1d 15411 | . . . . 5 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣))) |
26 | 2fveq3 6776 | . . . . . 6 ⊢ (𝑣 = 𝑚 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑚))) | |
27 | 26 | cbvsumv 15406 | . . . . 5 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) |
28 | 25, 27 | eqtrdi 2796 | . . . 4 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
29 | 28 | cbvmptv 5192 | . . 3 ⊢ (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
30 | 22, 29 | eqtri 2768 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
31 | 21, 30 | fmptd 6985 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {crab 3070 ⊆ wss 3892 class class class wbr 5079 ↦ cmpt 5162 ⟶wf 6428 –onto→wfo 6430 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 1c1 10873 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ...cfz 13238 Σcsu 15395 ∥ cdvds 15961 Basecbs 16910 0gc0g 17148 ℤRHomczrh 20699 ℤ/nℤczn 20702 DChrcdchr 26378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-ec 8483 df-qs 8487 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-sum 15396 df-dvds 15962 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-0g 17150 df-imas 17217 df-qus 17218 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-nsg 18751 df-eqg 18752 df-ghm 18830 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-rnghom 19957 df-subrg 20020 df-lmod 20123 df-lss 20192 df-lsp 20232 df-sra 20432 df-rgmod 20433 df-lidl 20434 df-rsp 20435 df-2idl 20501 df-cnfld 20596 df-zring 20669 df-zrh 20703 df-zn 20706 |
This theorem is referenced by: dchrisum0flblem2 26655 dchrisum0fno1 26657 |
Copyright terms: Public domain | W3C validator |