![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0ff | Structured version Visualization version GIF version |
Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0flb.r | ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
Ref | Expression |
---|---|
dchrisum0ff | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 14020 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) | |
2 | dvdsssfz1 16360 | . . . . 5 ⊢ (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) |
4 | 1, 3 | ssfid 9325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ∈ Fin) |
5 | dchrisum0flb.r | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) | |
6 | 5 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ) |
7 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nnnn0d 12609 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
9 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
10 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
11 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
12 | 9, 10, 11 | znzrhfo 21584 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑍)) |
13 | fof 6833 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍)) |
16 | elrabi 3698 | . . . . . 6 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℕ) | |
17 | 16 | nnzd 12662 | . . . . 5 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℤ) |
18 | ffvelcdm 7113 | . . . . 5 ⊢ ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ (Base‘𝑍)) | |
19 | 15, 17, 18 | syl2an 595 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝐿‘𝑚) ∈ (Base‘𝑍)) |
20 | 6, 19 | ffvelcdmd 7117 | . . 3 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
21 | 4, 20 | fsumrecl 15778 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
22 | dchrisum0f.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
23 | breq2 5173 | . . . . . . 7 ⊢ (𝑏 = 𝑛 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝑛)) | |
24 | 23 | rabbidv 3446 | . . . . . 6 ⊢ (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) |
25 | 24 | sumeq1d 15744 | . . . . 5 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣))) |
26 | 2fveq3 6924 | . . . . . 6 ⊢ (𝑣 = 𝑚 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑚))) | |
27 | 26 | cbvsumv 15740 | . . . . 5 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) |
28 | 25, 27 | eqtrdi 2790 | . . . 4 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
29 | 28 | cbvmptv 5282 | . . 3 ⊢ (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
30 | 22, 29 | eqtri 2762 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
31 | 21, 30 | fmptd 7146 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 {crab 3438 ⊆ wss 3970 class class class wbr 5169 ↦ cmpt 5252 ⟶wf 6568 –onto→wfo 6570 ‘cfv 6572 (class class class)co 7445 ℝcr 11179 1c1 11181 ℕcn 12289 ℕ0cn0 12549 ℤcz 12635 ...cfz 13563 Σcsu 15730 ∥ cdvds 16296 Basecbs 17253 0gc0g 17494 ℤRHomczrh 21528 ℤ/nℤczn 21531 DChrcdchr 27285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 ax-mulf 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-ec 8761 df-qs 8765 df-map 8882 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-sup 9507 df-inf 9508 df-oi 9575 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-z 12636 df-dec 12755 df-uz 12900 df-rp 13054 df-fz 13564 df-fzo 13708 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15731 df-dvds 16297 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-starv 17321 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ds 17328 df-unif 17329 df-0g 17496 df-imas 17563 df-qus 17564 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-mhm 18813 df-grp 18971 df-minusg 18972 df-sbg 18973 df-mulg 19103 df-subg 19158 df-nsg 19159 df-eqg 19160 df-ghm 19248 df-cmn 19819 df-abl 19820 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-cring 20258 df-oppr 20355 df-rhm 20493 df-subrng 20567 df-subrg 20592 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 |
This theorem is referenced by: dchrisum0flblem2 27562 dchrisum0fno1 27564 |
Copyright terms: Public domain | W3C validator |