Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrisum0ff | Structured version Visualization version GIF version |
Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0flb.r | ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
Ref | Expression |
---|---|
dchrisum0ff | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13674 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) | |
2 | dvdsssfz1 16008 | . . . . 5 ⊢ (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) |
4 | 1, 3 | ssfid 9003 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ∈ Fin) |
5 | dchrisum0flb.r | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) | |
6 | 5 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ) |
7 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nnnn0d 12276 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
9 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
10 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
11 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
12 | 9, 10, 11 | znzrhfo 20736 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑍)) |
13 | fof 6684 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍)) |
16 | elrabi 3619 | . . . . . 6 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℕ) | |
17 | 16 | nnzd 12407 | . . . . 5 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℤ) |
18 | ffvelrn 6953 | . . . . 5 ⊢ ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ (Base‘𝑍)) | |
19 | 15, 17, 18 | syl2an 595 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝐿‘𝑚) ∈ (Base‘𝑍)) |
20 | 6, 19 | ffvelrnd 6956 | . . 3 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
21 | 4, 20 | fsumrecl 15427 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
22 | dchrisum0f.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
23 | breq2 5082 | . . . . . . 7 ⊢ (𝑏 = 𝑛 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝑛)) | |
24 | 23 | rabbidv 3412 | . . . . . 6 ⊢ (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) |
25 | 24 | sumeq1d 15394 | . . . . 5 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣))) |
26 | 2fveq3 6773 | . . . . . 6 ⊢ (𝑣 = 𝑚 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑚))) | |
27 | 26 | cbvsumv 15389 | . . . . 5 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) |
28 | 25, 27 | eqtrdi 2795 | . . . 4 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
29 | 28 | cbvmptv 5191 | . . 3 ⊢ (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
30 | 22, 29 | eqtri 2767 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
31 | 21, 30 | fmptd 6982 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ⟶wf 6426 –onto→wfo 6428 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 1c1 10856 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 ...cfz 13221 Σcsu 15378 ∥ cdvds 15944 Basecbs 16893 0gc0g 17131 ℤRHomczrh 20682 ℤ/nℤczn 20685 DChrcdchr 26361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-ec 8474 df-qs 8478 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-dvds 15945 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-imas 17200 df-qus 17201 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-nsg 18734 df-eqg 18735 df-ghm 18813 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-rnghom 19940 df-subrg 20003 df-lmod 20106 df-lss 20175 df-lsp 20215 df-sra 20415 df-rgmod 20416 df-lidl 20417 df-rsp 20418 df-2idl 20484 df-cnfld 20579 df-zring 20652 df-zrh 20686 df-zn 20689 |
This theorem is referenced by: dchrisum0flblem2 26638 dchrisum0fno1 26640 |
Copyright terms: Public domain | W3C validator |