MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0ff Structured version   Visualization version   GIF version

Theorem dchrisum0ff 27456
Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Assertion
Ref Expression
dchrisum0ff (𝜑𝐹:ℕ⟶ℝ)
Distinct variable groups:   𝑞,𝑏,𝑣   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0ff
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13981 . . . 4 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
2 dvdsssfz1 16324 . . . . 5 (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ⊆ (1...𝑛))
32adantl 481 . . . 4 ((𝜑𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ⊆ (1...𝑛))
41, 3ssfid 9268 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞𝑛} ∈ Fin)
5 dchrisum0flb.r . . . . 5 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
65ad2antrr 726 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ)
7 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87nnnn0d 12555 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
9 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
10 eqid 2734 . . . . . . . 8 (Base‘𝑍) = (Base‘𝑍)
11 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
129, 10, 11znzrhfo 21495 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fof 6787 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
148, 12, 133syl 18 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑍))
1514adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍))
16 elrabi 3664 . . . . . 6 (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} → 𝑚 ∈ ℕ)
1716nnzd 12608 . . . . 5 (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} → 𝑚 ∈ ℤ)
18 ffvelcdm 7068 . . . . 5 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
1915, 17, 18syl2an 596 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → (𝐿𝑚) ∈ (Base‘𝑍))
206, 19ffvelcdmd 7072 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛}) → (𝑋‘(𝐿𝑚)) ∈ ℝ)
214, 20fsumrecl 15739 . 2 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)) ∈ ℝ)
22 dchrisum0f.f . . 3 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
23 breq2 5121 . . . . . . 7 (𝑏 = 𝑛 → (𝑞𝑏𝑞𝑛))
2423rabbidv 3421 . . . . . 6 (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞𝑏} = {𝑞 ∈ ℕ ∣ 𝑞𝑛})
2524sumeq1d 15705 . . . . 5 (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑣)))
26 2fveq3 6878 . . . . . 6 (𝑣 = 𝑚 → (𝑋‘(𝐿𝑣)) = (𝑋‘(𝐿𝑚)))
2726cbvsumv 15701 . . . . 5 Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚))
2825, 27eqtrdi 2785 . . . 4 (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
2928cbvmptv 5223 . . 3 (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
3022, 29eqtri 2757 . 2 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑛} (𝑋‘(𝐿𝑚)))
3121, 30fmptd 7101 1 (𝜑𝐹:ℕ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3413  wss 3924   class class class wbr 5117  cmpt 5199  wf 6524  ontowfo 6526  cfv 6528  (class class class)co 7400  cr 11121  1c1 11123  cn 12233  0cn0 12494  cz 12581  ...cfz 13514  Σcsu 15691  cdvds 16259  Basecbs 17215  0gc0g 17440  ℤRHomczrh 21447  ℤ/nczn 21450  DChrcdchr 27181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-sum 15692  df-dvds 16260  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-0g 17442  df-imas 17509  df-qus 17510  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20284  df-rhm 20419  df-subrng 20493  df-subrg 20517  df-lmod 20806  df-lss 20876  df-lsp 20916  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-cnfld 21303  df-zring 21395  df-zrh 21451  df-zn 21454
This theorem is referenced by:  dchrisum0flblem2  27458  dchrisum0fno1  27460
  Copyright terms: Public domain W3C validator