| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0ff | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
| rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
| rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
| dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
| dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrisum0flb.r | ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
| Ref | Expression |
|---|---|
| dchrisum0ff | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13996 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) | |
| 2 | dvdsssfz1 16337 | . . . . 5 ⊢ (𝑛 ∈ ℕ → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ⊆ (1...𝑛)) |
| 4 | 1, 3 | ssfid 9283 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} ∈ Fin) |
| 5 | dchrisum0flb.r | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) | |
| 6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → 𝑋:(Base‘𝑍)⟶ℝ) |
| 7 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | 7 | nnnn0d 12570 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 9 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 10 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 11 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 12 | 9, 10, 11 | znzrhfo 21520 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑍)) |
| 13 | fof 6800 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) | |
| 14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐿:ℤ⟶(Base‘𝑍)) |
| 16 | elrabi 3670 | . . . . . 6 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℕ) | |
| 17 | 16 | nnzd 12623 | . . . . 5 ⊢ (𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} → 𝑚 ∈ ℤ) |
| 18 | ffvelcdm 7081 | . . . . 5 ⊢ ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ (Base‘𝑍)) | |
| 19 | 15, 17, 18 | syl2an 596 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝐿‘𝑚) ∈ (Base‘𝑍)) |
| 20 | 6, 19 | ffvelcdmd 7085 | . . 3 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) → (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
| 21 | 4, 20 | fsumrecl 15752 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) ∈ ℝ) |
| 22 | dchrisum0f.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
| 23 | breq2 5127 | . . . . . . 7 ⊢ (𝑏 = 𝑛 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝑛)) | |
| 24 | 23 | rabbidv 3427 | . . . . . 6 ⊢ (𝑏 = 𝑛 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛}) |
| 25 | 24 | sumeq1d 15718 | . . . . 5 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣))) |
| 26 | 2fveq3 6891 | . . . . . 6 ⊢ (𝑣 = 𝑚 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑚))) | |
| 27 | 26 | cbvsumv 15714 | . . . . 5 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚)) |
| 28 | 25, 27 | eqtrdi 2785 | . . . 4 ⊢ (𝑏 = 𝑛 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
| 29 | 28 | cbvmptv 5235 | . . 3 ⊢ (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
| 30 | 22, 29 | eqtri 2757 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑛} (𝑋‘(𝐿‘𝑚))) |
| 31 | 21, 30 | fmptd 7114 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 class class class wbr 5123 ↦ cmpt 5205 ⟶wf 6537 –onto→wfo 6539 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 1c1 11138 ℕcn 12248 ℕ0cn0 12509 ℤcz 12596 ...cfz 13529 Σcsu 15704 ∥ cdvds 16272 Basecbs 17229 0gc0g 17455 ℤRHomczrh 21472 ℤ/nℤczn 21475 DChrcdchr 27212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-sum 15705 df-dvds 16273 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-imas 17524 df-qus 17525 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-nsg 19111 df-eqg 19112 df-ghm 19200 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-lmod 20828 df-lss 20898 df-lsp 20938 df-sra 21140 df-rgmod 21141 df-lidl 21180 df-rsp 21181 df-2idl 21222 df-cnfld 21327 df-zring 21420 df-zrh 21476 df-zn 21479 |
| This theorem is referenced by: dchrisum0flblem2 27489 dchrisum0fno1 27491 |
| Copyright terms: Public domain | W3C validator |