![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones21 | Structured version Visualization version GIF version |
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones21.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones21.2 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
sticksstones21.3 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
sticksstones21.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones21 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones21.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones21.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
3 | sticksstones21.3 | . . 3 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
4 | hashnncl 14409 | . . . 4 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) |
6 | 3, 5 | mpbird 257 | . 2 ⊢ (𝜑 → (♯‘𝑆) ∈ ℕ) |
7 | fveq2 6915 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
8 | 7 | cbvsumv 15738 | . . . . 5 ⊢ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) |
9 | 8 | eqeq1i 2745 | . . . 4 ⊢ (Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁) |
10 | 9 | anbi2i 622 | . . 3 ⊢ ((𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)) |
11 | 10 | abbii 2812 | . 2 ⊢ {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)} |
12 | sticksstones21.4 | . . 3 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} | |
13 | fveq2 6915 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑓‘𝑖) = (𝑓‘𝑘)) | |
14 | 13 | cbvsumv 15738 | . . . . . 6 ⊢ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) |
15 | 14 | eqeq1i 2745 | . . . . 5 ⊢ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁 ↔ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁) |
16 | 15 | anbi2i 622 | . . . 4 ⊢ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)) |
17 | 16 | abbii 2812 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
18 | 12, 17 | eqtri 2768 | . 2 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
19 | eqidd 2741 | . 2 ⊢ (𝜑 → (♯‘𝑆) = (♯‘𝑆)) | |
20 | 1, 2, 6, 11, 18, 19 | sticksstones20 42115 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∅c0 4352 ⟶wf 6564 ‘cfv 6568 (class class class)co 7443 Fincfn 8997 1c1 11179 + caddc 11181 − cmin 11514 ℕcn 12287 ℕ0cn0 12547 ...cfz 13561 Ccbc 14345 ♯chash 14373 Σcsu 15728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-inf2 9704 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-oadd 8520 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-sup 9505 df-inf 9506 df-oi 9573 df-dju 9964 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-n0 12548 df-z 12634 df-uz 12898 df-rp 13052 df-ico 13407 df-fz 13562 df-fzo 13706 df-seq 14047 df-exp 14107 df-fac 14317 df-bc 14346 df-hash 14374 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-clim 15528 df-sum 15729 |
This theorem is referenced by: sticksstones22 42117 |
Copyright terms: Public domain | W3C validator |