![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones21 | Structured version Visualization version GIF version |
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones21.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones21.2 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
sticksstones21.3 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
sticksstones21.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones21 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones21.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones21.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
3 | sticksstones21.3 | . . 3 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
4 | hashnncl 14361 | . . . 4 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) |
6 | 3, 5 | mpbird 256 | . 2 ⊢ (𝜑 → (♯‘𝑆) ∈ ℕ) |
7 | fveq2 6896 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
8 | 7 | cbvsumv 15678 | . . . . 5 ⊢ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) |
9 | 8 | eqeq1i 2730 | . . . 4 ⊢ (Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁) |
10 | 9 | anbi2i 621 | . . 3 ⊢ ((𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)) |
11 | 10 | abbii 2795 | . 2 ⊢ {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)} |
12 | sticksstones21.4 | . . 3 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} | |
13 | fveq2 6896 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑓‘𝑖) = (𝑓‘𝑘)) | |
14 | 13 | cbvsumv 15678 | . . . . . 6 ⊢ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) |
15 | 14 | eqeq1i 2730 | . . . . 5 ⊢ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁 ↔ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁) |
16 | 15 | anbi2i 621 | . . . 4 ⊢ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)) |
17 | 16 | abbii 2795 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
18 | 12, 17 | eqtri 2753 | . 2 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
19 | eqidd 2726 | . 2 ⊢ (𝜑 → (♯‘𝑆) = (♯‘𝑆)) | |
20 | 1, 2, 6, 11, 18, 19 | sticksstones20 41766 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ≠ wne 2929 ∅c0 4322 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 1c1 11141 + caddc 11143 − cmin 11476 ℕcn 12245 ℕ0cn0 12505 ...cfz 13519 Ccbc 14297 ♯chash 14325 Σcsu 15668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-ico 13365 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 |
This theorem is referenced by: sticksstones22 41768 |
Copyright terms: Public domain | W3C validator |