![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones21 | Structured version Visualization version GIF version |
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones21.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones21.2 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
sticksstones21.3 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
sticksstones21.4 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones21 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones21.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones21.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
3 | sticksstones21.3 | . . 3 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
4 | hashnncl 14391 | . . . 4 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) |
6 | 3, 5 | mpbird 257 | . 2 ⊢ (𝜑 → (♯‘𝑆) ∈ ℕ) |
7 | fveq2 6901 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
8 | 7 | cbvsumv 15718 | . . . . 5 ⊢ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) |
9 | 8 | eqeq1i 2738 | . . . 4 ⊢ (Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁) |
10 | 9 | anbi2i 622 | . . 3 ⊢ ((𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)) |
11 | 10 | abbii 2805 | . 2 ⊢ {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔‘𝑘) = 𝑁)} |
12 | sticksstones21.4 | . . 3 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} | |
13 | fveq2 6901 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑓‘𝑖) = (𝑓‘𝑘)) | |
14 | 13 | cbvsumv 15718 | . . . . . 6 ⊢ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) |
15 | 14 | eqeq1i 2738 | . . . . 5 ⊢ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁 ↔ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁) |
16 | 15 | anbi2i 622 | . . . 4 ⊢ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)) |
17 | 16 | abbii 2805 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
18 | 12, 17 | eqtri 2761 | . 2 ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘 ∈ 𝑆 (𝑓‘𝑘) = 𝑁)} |
19 | eqidd 2734 | . 2 ⊢ (𝜑 → (♯‘𝑆) = (♯‘𝑆)) | |
20 | 1, 2, 6, 11, 18, 19 | sticksstones20 42109 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 {cab 2710 ≠ wne 2936 ∅c0 4339 ⟶wf 6554 ‘cfv 6558 (class class class)co 7425 Fincfn 8978 1c1 11147 + caddc 11149 − cmin 11483 ℕcn 12257 ℕ0cn0 12517 ...cfz 13537 Ccbc 14327 ♯chash 14355 Σcsu 15708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-om 7881 df-1st 8007 df-2nd 8008 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-oadd 8503 df-er 8738 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-sup 9473 df-inf 9474 df-oi 9541 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-n0 12518 df-z 12605 df-uz 12870 df-rp 13026 df-ico 13383 df-fz 13538 df-fzo 13682 df-seq 14029 df-exp 14089 df-fac 14299 df-bc 14328 df-hash 14356 df-cj 15124 df-re 15125 df-im 15126 df-sqrt 15260 df-abs 15261 df-clim 15510 df-sum 15709 |
This theorem is referenced by: sticksstones22 42111 |
Copyright terms: Public domain | W3C validator |