Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones21 Structured version   Visualization version   GIF version

Theorem sticksstones21 42150
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones21.1 (𝜑𝑁 ∈ ℕ0)
sticksstones21.2 (𝜑𝑆 ∈ Fin)
sticksstones21.3 (𝜑𝑆 ≠ ∅)
sticksstones21.4 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones21 (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓,𝑖
Allowed substitution hints:   𝜑(𝑓,𝑖)   𝐴(𝑓,𝑖)   𝑁(𝑖)

Proof of Theorem sticksstones21
Dummy variables 𝑘 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones21.1 . 2 (𝜑𝑁 ∈ ℕ0)
2 sticksstones21.2 . 2 (𝜑𝑆 ∈ Fin)
3 sticksstones21.3 . . 3 (𝜑𝑆 ≠ ∅)
4 hashnncl 14273 . . . 4 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
52, 4syl 17 . . 3 (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
63, 5mpbird 257 . 2 (𝜑 → (♯‘𝑆) ∈ ℕ)
7 fveq2 6822 . . . . . 6 (𝑗 = 𝑘 → (𝑔𝑗) = (𝑔𝑘))
87cbvsumv 15603 . . . . 5 Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔𝑗) = Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔𝑘)
98eqeq1i 2734 . . . 4 𝑗 ∈ (1...(♯‘𝑆))(𝑔𝑗) = 𝑁 ↔ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔𝑘) = 𝑁)
109anbi2i 623 . . 3 ((𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔𝑘) = 𝑁))
1110abbii 2796 . 2 {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑗 ∈ (1...(♯‘𝑆))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...(♯‘𝑆))⟶ℕ0 ∧ Σ𝑘 ∈ (1...(♯‘𝑆))(𝑔𝑘) = 𝑁)}
12 sticksstones21.4 . . 3 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 𝑁)}
13 fveq2 6822 . . . . . . 7 (𝑖 = 𝑘 → (𝑓𝑖) = (𝑓𝑘))
1413cbvsumv 15603 . . . . . 6 Σ𝑖𝑆 (𝑓𝑖) = Σ𝑘𝑆 (𝑓𝑘)
1514eqeq1i 2734 . . . . 5 𝑖𝑆 (𝑓𝑖) = 𝑁 ↔ Σ𝑘𝑆 (𝑓𝑘) = 𝑁)
1615anbi2i 623 . . . 4 ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘𝑆 (𝑓𝑘) = 𝑁))
1716abbii 2796 . . 3 {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘𝑆 (𝑓𝑘) = 𝑁)}
1812, 17eqtri 2752 . 2 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑘𝑆 (𝑓𝑘) = 𝑁)}
19 eqidd 2730 . 2 (𝜑 → (♯‘𝑆) = (♯‘𝑆))
201, 2, 6, 11, 18, 19sticksstones20 42149 1 (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  c0 4284  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  1c1 11010   + caddc 11012  cmin 11347  cn 12128  0cn0 12384  ...cfz 13410  Ccbc 14209  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones22  42151
  Copyright terms: Public domain W3C validator