Step | Hyp | Ref
| Expression |
1 | | elply2 25701 |
. . 3
β’ (πΉ β (Polyβπ) β (π β β β§ βπ β β0
βπ β ((π βͺ {0}) βm
β0)((π
β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ)))))) |
2 | 1 | simprbi 497 |
. 2
β’ (πΉ β (Polyβπ) β βπ β β0
βπ β ((π βͺ {0}) βm
β0)((π
β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) |
3 | | dgrub.1 |
. . . . 5
β’ π΄ = (coeffβπΉ) |
4 | | dgrub.2 |
. . . . 5
β’ π = (degβπΉ) |
5 | | simpll 765 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β πΉ β (Polyβπ)) |
6 | | simplrl 775 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β π β β0) |
7 | | simplrr 776 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β π β ((π βͺ {0}) βm
β0)) |
8 | | simprl 769 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β (π β (β€β₯β(π + 1))) = {0}) |
9 | | simprr 771 |
. . . . . 6
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ)))) |
10 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = π β (πβπ) = (πβπ)) |
11 | | oveq2 7413 |
. . . . . . . . . 10
β’ (π = π β (π₯βπ) = (π₯βπ)) |
12 | 10, 11 | oveq12d 7423 |
. . . . . . . . 9
β’ (π = π β ((πβπ) Β· (π₯βπ)) = ((πβπ) Β· (π₯βπ))) |
13 | 12 | cbvsumv 15638 |
. . . . . . . 8
β’
Ξ£π β
(0...π)((πβπ) Β· (π₯βπ)) = Ξ£π β (0...π)((πβπ) Β· (π₯βπ)) |
14 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π₯ = π§ β (π₯βπ) = (π§βπ)) |
15 | 14 | oveq2d 7421 |
. . . . . . . . 9
β’ (π₯ = π§ β ((πβπ) Β· (π₯βπ)) = ((πβπ) Β· (π§βπ))) |
16 | 15 | sumeq2sdv 15646 |
. . . . . . . 8
β’ (π₯ = π§ β Ξ£π β (0...π)((πβπ) Β· (π₯βπ)) = Ξ£π β (0...π)((πβπ) Β· (π§βπ))) |
17 | 13, 16 | eqtrid 2784 |
. . . . . . 7
β’ (π₯ = π§ β Ξ£π β (0...π)((πβπ) Β· (π₯βπ)) = Ξ£π β (0...π)((πβπ) Β· (π§βπ))) |
18 | 17 | cbvmptv 5260 |
. . . . . 6
β’ (π₯ β β β¦
Ξ£π β (0...π)((πβπ) Β· (π₯βπ))) = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ))) |
19 | 9, 18 | eqtrdi 2788 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))) |
20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 25742 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β§ ((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ))))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
21 | 20 | ex 413 |
. . 3
β’ ((πΉ β (Polyβπ) β§ (π β β0 β§ π β ((π βͺ {0}) βm
β0))) β (((π β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ)))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
22 | 21 | rexlimdvva 3211 |
. 2
β’ (πΉ β (Polyβπ) β (βπ β β0
βπ β ((π βͺ {0}) βm
β0)((π
β (β€β₯β(π + 1))) = {0} β§ πΉ = (π₯ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π₯βπ)))) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
23 | 2, 22 | mpd 15 |
1
β’ (πΉ β (Polyβπ) β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |