Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeid | Structured version Visualization version GIF version |
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
coeid | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply2 25440 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))))) | |
2 | 1 | simprbi 497 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) |
3 | dgrub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
5 | simpll 764 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 ∈ (Poly‘𝑆)) | |
6 | simplrl 774 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑛 ∈ ℕ0) | |
7 | simplrr 775 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
8 | simprl 768 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) | |
9 | simprr 770 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) | |
10 | fveq2 6812 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑎‘𝑚) = (𝑎‘𝑘)) | |
11 | oveq2 7325 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑥↑𝑚) = (𝑥↑𝑘)) | |
12 | 10, 11 | oveq12d 7335 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → ((𝑎‘𝑚) · (𝑥↑𝑚)) = ((𝑎‘𝑘) · (𝑥↑𝑘))) |
13 | 12 | cbvsumv 15487 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) |
14 | oveq1 7324 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑥↑𝑘) = (𝑧↑𝑘)) | |
15 | 14 | oveq2d 7333 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
16 | 15 | sumeq2sdv 15495 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
17 | 13, 16 | eqtrid 2789 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
18 | 17 | cbvmptv 5200 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
19 | 9, 18 | eqtrdi 2793 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 25481 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
21 | 20 | ex 413 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
22 | 21 | rexlimdvva 3202 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
23 | 2, 22 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 ∪ cun 3895 ⊆ wss 3897 {csn 4571 ↦ cmpt 5170 “ cima 5611 ‘cfv 6466 (class class class)co 7317 ↑m cmap 8665 ℂcc 10949 0cc0 10951 1c1 10952 + caddc 10954 · cmul 10956 ℕ0cn0 12313 ℤ≥cuz 12662 ...cfz 13319 ↑cexp 13862 Σcsu 15476 Polycply 25428 coeffccoe 25430 degcdgr 25431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-sup 9278 df-inf 9279 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-fz 13320 df-fzo 13463 df-fl 13592 df-seq 13802 df-exp 13863 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-rlim 15277 df-sum 15477 df-0p 24917 df-ply 25432 df-coe 25434 df-dgr 25435 |
This theorem is referenced by: coeid2 25483 plyco 25485 0dgrb 25490 coeaddlem 25493 coemullem 25494 coe11 25497 plycn 25505 plycjlem 25520 |
Copyright terms: Public domain | W3C validator |