![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeid | Structured version Visualization version GIF version |
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
coeid | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply2 26250 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) |
3 | dgrub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
5 | simpll 767 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 ∈ (Poly‘𝑆)) | |
6 | simplrl 777 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑛 ∈ ℕ0) | |
7 | simplrr 778 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
8 | simprl 771 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) | |
9 | simprr 773 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) | |
10 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑎‘𝑚) = (𝑎‘𝑘)) | |
11 | oveq2 7439 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑥↑𝑚) = (𝑥↑𝑘)) | |
12 | 10, 11 | oveq12d 7449 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → ((𝑎‘𝑚) · (𝑥↑𝑚)) = ((𝑎‘𝑘) · (𝑥↑𝑘))) |
13 | 12 | cbvsumv 15729 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) |
14 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑥↑𝑘) = (𝑧↑𝑘)) | |
15 | 14 | oveq2d 7447 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
16 | 15 | sumeq2sdv 15736 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
17 | 13, 16 | eqtrid 2787 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
18 | 17 | cbvmptv 5261 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
19 | 9, 18 | eqtrdi 2791 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 26291 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
21 | 20 | ex 412 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
22 | 21 | rexlimdvva 3211 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
23 | 2, 22 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∪ cun 3961 ⊆ wss 3963 {csn 4631 ↦ cmpt 5231 “ cima 5692 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 ℕ0cn0 12524 ℤ≥cuz 12876 ...cfz 13544 ↑cexp 14099 Σcsu 15719 Polycply 26238 coeffccoe 26240 degcdgr 26241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-0p 25719 df-ply 26242 df-coe 26244 df-dgr 26245 |
This theorem is referenced by: coeid2 26293 plyco 26295 0dgrb 26300 coeaddlem 26303 coemullem 26304 coe11 26307 plycn 26315 plycnOLD 26316 plycjlem 26331 |
Copyright terms: Public domain | W3C validator |