![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeid | Structured version Visualization version GIF version |
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
coeid | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply2 26175 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))))) | |
2 | 1 | simprbi 495 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) |
3 | dgrub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
5 | simpll 765 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 ∈ (Poly‘𝑆)) | |
6 | simplrl 775 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑛 ∈ ℕ0) | |
7 | simplrr 776 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
8 | simprl 769 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) | |
9 | simprr 771 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) | |
10 | fveq2 6896 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑎‘𝑚) = (𝑎‘𝑘)) | |
11 | oveq2 7427 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑥↑𝑚) = (𝑥↑𝑘)) | |
12 | 10, 11 | oveq12d 7437 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → ((𝑎‘𝑚) · (𝑥↑𝑚)) = ((𝑎‘𝑘) · (𝑥↑𝑘))) |
13 | 12 | cbvsumv 15678 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) |
14 | oveq1 7426 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑥↑𝑘) = (𝑧↑𝑘)) | |
15 | 14 | oveq2d 7435 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
16 | 15 | sumeq2sdv 15686 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
17 | 13, 16 | eqtrid 2777 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
18 | 17 | cbvmptv 5262 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
19 | 9, 18 | eqtrdi 2781 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 26216 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
21 | 20 | ex 411 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
22 | 21 | rexlimdvva 3201 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
23 | 2, 22 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ∪ cun 3942 ⊆ wss 3944 {csn 4630 ↦ cmpt 5232 “ cima 5681 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 ℂcc 11138 0cc0 11140 1c1 11141 + caddc 11143 · cmul 11145 ℕ0cn0 12505 ℤ≥cuz 12855 ...cfz 13519 ↑cexp 14062 Σcsu 15668 Polycply 26163 coeffccoe 26165 degcdgr 26166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 df-sum 15669 df-0p 25643 df-ply 26167 df-coe 26169 df-dgr 26170 |
This theorem is referenced by: coeid2 26218 plyco 26220 0dgrb 26225 coeaddlem 26228 coemullem 26229 coe11 26232 plycn 26240 plycnOLD 26241 plycjlem 26256 |
Copyright terms: Public domain | W3C validator |