| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeid | Structured version Visualization version GIF version | ||
| Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
| Ref | Expression |
|---|---|
| coeid | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elply2 26101 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) |
| 3 | dgrub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
| 4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 5 | simpll 766 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 ∈ (Poly‘𝑆)) | |
| 6 | simplrl 776 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑛 ∈ ℕ0) | |
| 7 | simplrr 777 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
| 8 | simprl 770 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) | |
| 9 | simprr 772 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) | |
| 10 | fveq2 6858 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑎‘𝑚) = (𝑎‘𝑘)) | |
| 11 | oveq2 7395 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑥↑𝑚) = (𝑥↑𝑘)) | |
| 12 | 10, 11 | oveq12d 7405 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → ((𝑎‘𝑚) · (𝑥↑𝑚)) = ((𝑎‘𝑘) · (𝑥↑𝑘))) |
| 13 | 12 | cbvsumv 15662 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) |
| 14 | oveq1 7394 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑥↑𝑘) = (𝑧↑𝑘)) | |
| 15 | 14 | oveq2d 7403 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 16 | 15 | sumeq2sdv 15669 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 17 | 13, 16 | eqtrid 2776 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 18 | 17 | cbvmptv 5211 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 19 | 9, 18 | eqtrdi 2780 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 26142 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 21 | 20 | ex 412 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 22 | 21 | rexlimdvva 3194 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
| 23 | 2, 22 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ↦ cmpt 5188 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ℕ0cn0 12442 ℤ≥cuz 12793 ...cfz 13468 ↑cexp 14026 Σcsu 15652 Polycply 26089 coeffccoe 26091 degcdgr 26092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-coe 26095 df-dgr 26096 |
| This theorem is referenced by: coeid2 26144 plyco 26146 0dgrb 26151 coeaddlem 26154 coemullem 26155 coe11 26158 plycn 26166 plycnOLD 26167 plycjlem 26182 |
| Copyright terms: Public domain | W3C validator |