Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem9 Structured version   Visualization version   GIF version

Theorem knoppndvlem9 36486
Description: Lemma for knoppndv 36500. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem9.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem9.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem9.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem9.m (𝜑𝑀 ∈ ℤ)
knoppndvlem9.n (𝜑𝑁 ∈ ℕ)
knoppndvlem9.1 (𝜑 → ¬ 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem9 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem9
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem9.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem9.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem9.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem9.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem9.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem9.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 36484 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem9.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝑀)
9 odd2np1 16389 . . . . . 6 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
105, 9syl 17 . . . . 5 (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
118, 10mpbid 232 . . . 4 (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀)
12 eqcom 2747 . . . . . . . . . . 11 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1312biimpi 216 . . . . . . . . . 10 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1413oveq1d 7463 . . . . . . . . 9 (((2 · 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1514adantl 481 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1615adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
17 2cnd 12371 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 2 ∈ ℂ)
18 zcn 12644 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
1918adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
2017, 19mulcld 11310 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (2 · 𝑚) ∈ ℂ)
21 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 1 ∈ ℂ)
22 2ne0 12397 . . . . . . . . . . 11 2 ≠ 0
2322a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 2 ≠ 0)
2420, 21, 17, 23divdird 12108 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 · 𝑚) / 2) + (1 / 2)))
2519, 17, 23divcan3d 12075 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚)
2625oveq1d 7463 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2)))
2724, 26eqtrd 2780 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2827adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2916, 28eqtrd 2780 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2)))
3029fveq2d 6924 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2))))
31 id 22 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ ℤ)
321, 31dnizphlfeqhlf 36442 . . . . . . 7 (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3332adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3433adantrr 716 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3530, 34eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2))
3611, 35rexlimddv 3167 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2))
3736oveq2d 7464 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · (1 / 2)))
38 knoppndvlem9.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
3938knoppndvlem3 36480 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
4039simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
4140recnd 11318 . . . . 5 (𝜑𝐶 ∈ ℂ)
4241, 4expcld 14196 . . . 4 (𝜑 → (𝐶𝐽) ∈ ℂ)
43 1cnd 11285 . . . 4 (𝜑 → 1 ∈ ℂ)
44 2cnd 12371 . . . 4 (𝜑 → 2 ∈ ℂ)
4522a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4642, 43, 44, 45div12d 12106 . . 3 (𝜑 → ((𝐶𝐽) · (1 / 2)) = (1 · ((𝐶𝐽) / 2)))
4742, 44, 45divcld 12070 . . . 4 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
4847mullidd 11308 . . 3 (𝜑 → (1 · ((𝐶𝐽) / 2)) = ((𝐶𝐽) / 2))
4946, 48eqtrd 2780 . 2 (𝜑 → ((𝐶𝐽) · (1 / 2)) = ((𝐶𝐽) / 2))
507, 37, 493eqtrd 2784 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  (,)cioo 13407  cfl 13841  cexp 14112  abscabs 15283  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303
This theorem is referenced by:  knoppndvlem10  36487
  Copyright terms: Public domain W3C validator