Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem9 Structured version   Visualization version   GIF version

Theorem knoppndvlem9 36508
Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem9.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem9.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem9.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem9.m (𝜑𝑀 ∈ ℤ)
knoppndvlem9.n (𝜑𝑁 ∈ ℕ)
knoppndvlem9.1 (𝜑 → ¬ 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem9 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem9
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem9.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem9.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem9.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem9.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem9.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem9.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 36506 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem9.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝑀)
9 odd2np1 16311 . . . . . 6 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
105, 9syl 17 . . . . 5 (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
118, 10mpbid 232 . . . 4 (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀)
12 eqcom 2736 . . . . . . . . . . 11 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1312biimpi 216 . . . . . . . . . 10 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1413oveq1d 7402 . . . . . . . . 9 (((2 · 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1514adantl 481 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1615adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
17 2cnd 12264 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 2 ∈ ℂ)
18 zcn 12534 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
1918adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
2017, 19mulcld 11194 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (2 · 𝑚) ∈ ℂ)
21 1cnd 11169 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 1 ∈ ℂ)
22 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
2322a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 2 ≠ 0)
2420, 21, 17, 23divdird 11996 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 · 𝑚) / 2) + (1 / 2)))
2519, 17, 23divcan3d 11963 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚)
2625oveq1d 7402 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2)))
2724, 26eqtrd 2764 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2827adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2916, 28eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2)))
3029fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2))))
31 id 22 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ ℤ)
321, 31dnizphlfeqhlf 36464 . . . . . . 7 (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3332adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3433adantrr 717 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3530, 34eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2))
3611, 35rexlimddv 3140 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2))
3736oveq2d 7403 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · (1 / 2)))
38 knoppndvlem9.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
3938knoppndvlem3 36502 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
4039simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
4140recnd 11202 . . . . 5 (𝜑𝐶 ∈ ℂ)
4241, 4expcld 14111 . . . 4 (𝜑 → (𝐶𝐽) ∈ ℂ)
43 1cnd 11169 . . . 4 (𝜑 → 1 ∈ ℂ)
44 2cnd 12264 . . . 4 (𝜑 → 2 ∈ ℂ)
4522a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4642, 43, 44, 45div12d 11994 . . 3 (𝜑 → ((𝐶𝐽) · (1 / 2)) = (1 · ((𝐶𝐽) / 2)))
4742, 44, 45divcld 11958 . . . 4 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
4847mullidd 11192 . . 3 (𝜑 → (1 · ((𝐶𝐽) / 2)) = ((𝐶𝐽) / 2))
4946, 48eqtrd 2764 . 2 (𝜑 → ((𝐶𝐽) · (1 / 2)) = ((𝐶𝐽) / 2))
507, 37, 493eqtrd 2768 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  (,)cioo 13306  cfl 13752  cexp 14026  abscabs 15200  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ioo 13310  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223
This theorem is referenced by:  knoppndvlem10  36509
  Copyright terms: Public domain W3C validator