Step | Hyp | Ref
| Expression |
1 | | knoppndvlem9.t |
. . 3
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
2 | | knoppndvlem9.f |
. . 3
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
3 | | knoppndvlem9.a |
. . 3
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
4 | | knoppndvlem9.j |
. . 3
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
5 | | knoppndvlem9.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | | knoppndvlem9.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
7 | 1, 2, 3, 4, 5, 6 | knoppndvlem7 34625 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) |
8 | | knoppndvlem9.1 |
. . . . 5
⊢ (𝜑 → ¬ 2 ∥ 𝑀) |
9 | | odd2np1 15978 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (¬ 2
∥ 𝑀 ↔
∃𝑚 ∈ ℤ ((2
· 𝑚) + 1) = 𝑀)) |
10 | 5, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 ·
𝑚) + 1) = 𝑀)) |
11 | 8, 10 | mpbid 231 |
. . . 4
⊢ (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀) |
12 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ (((2
· 𝑚) + 1) = 𝑀 ↔ 𝑀 = ((2 · 𝑚) + 1)) |
13 | 12 | biimpi 215 |
. . . . . . . . . 10
⊢ (((2
· 𝑚) + 1) = 𝑀 → 𝑀 = ((2 · 𝑚) + 1)) |
14 | 13 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((2
· 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ ((2
· 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
16 | 15 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
17 | | 2cnd 11981 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 2 ∈
ℂ) |
18 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
ℂ) |
19 | 18 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
20 | 17, 19 | mulcld 10926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (2 · 𝑚) ∈
ℂ) |
21 | | 1cnd 10901 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 1 ∈
ℂ) |
22 | | 2ne0 12007 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 2 ≠
0) |
24 | 20, 21, 17, 23 | divdird 11719 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 ·
𝑚) / 2) + (1 /
2))) |
25 | 19, 17, 23 | divcan3d 11686 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚) |
26 | 25 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2))) |
27 | 24, 26 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2))) |
28 | 27 | adantrr 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2))) |
29 | 16, 28 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2))) |
30 | 29 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2)))) |
31 | | id 22 |
. . . . . . . 8
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
ℤ) |
32 | 1, 31 | dnizphlfeqhlf 34583 |
. . . . . . 7
⊢ (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
34 | 33 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
35 | 30, 34 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2)) |
36 | 11, 35 | rexlimddv 3219 |
. . 3
⊢ (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2)) |
37 | 36 | oveq2d 7271 |
. 2
⊢ (𝜑 → ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶↑𝐽) · (1 / 2))) |
38 | | knoppndvlem9.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
39 | 38 | knoppndvlem3 34621 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
40 | 39 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
41 | 40 | recnd 10934 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
42 | 41, 4 | expcld 13792 |
. . . 4
⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
43 | | 1cnd 10901 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
44 | | 2cnd 11981 |
. . . 4
⊢ (𝜑 → 2 ∈
ℂ) |
45 | 22 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ≠ 0) |
46 | 42, 43, 44, 45 | div12d 11717 |
. . 3
⊢ (𝜑 → ((𝐶↑𝐽) · (1 / 2)) = (1 · ((𝐶↑𝐽) / 2))) |
47 | 42, 44, 45 | divcld 11681 |
. . . 4
⊢ (𝜑 → ((𝐶↑𝐽) / 2) ∈ ℂ) |
48 | 47 | mulid2d 10924 |
. . 3
⊢ (𝜑 → (1 · ((𝐶↑𝐽) / 2)) = ((𝐶↑𝐽) / 2)) |
49 | 46, 48 | eqtrd 2778 |
. 2
⊢ (𝜑 → ((𝐶↑𝐽) · (1 / 2)) = ((𝐶↑𝐽) / 2)) |
50 | 7, 37, 49 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) |