Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem9 Structured version   Visualization version   GIF version

Theorem knoppndvlem9 36554
Description: Lemma for knoppndv 36568. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem9.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem9.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem9.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem9.m (𝜑𝑀 ∈ ℤ)
knoppndvlem9.n (𝜑𝑁 ∈ ℕ)
knoppndvlem9.1 (𝜑 → ¬ 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem9 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem9
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem9.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem9.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem9.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem9.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem9.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem9.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 36552 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem9.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝑀)
9 odd2np1 16247 . . . . . 6 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
105, 9syl 17 . . . . 5 (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
118, 10mpbid 232 . . . 4 (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀)
12 eqcom 2738 . . . . . . . . . . 11 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1312biimpi 216 . . . . . . . . . 10 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1413oveq1d 7356 . . . . . . . . 9 (((2 · 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1514adantl 481 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1615adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
17 2cnd 12198 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 2 ∈ ℂ)
18 zcn 12468 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
1918adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
2017, 19mulcld 11127 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (2 · 𝑚) ∈ ℂ)
21 1cnd 11102 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 1 ∈ ℂ)
22 2ne0 12224 . . . . . . . . . . 11 2 ≠ 0
2322a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 2 ≠ 0)
2420, 21, 17, 23divdird 11930 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 · 𝑚) / 2) + (1 / 2)))
2519, 17, 23divcan3d 11897 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚)
2625oveq1d 7356 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2)))
2724, 26eqtrd 2766 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2827adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2916, 28eqtrd 2766 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2)))
3029fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2))))
31 id 22 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ ℤ)
321, 31dnizphlfeqhlf 36510 . . . . . . 7 (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3332adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3433adantrr 717 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3530, 34eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2))
3611, 35rexlimddv 3139 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2))
3736oveq2d 7357 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · (1 / 2)))
38 knoppndvlem9.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
3938knoppndvlem3 36548 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
4039simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
4140recnd 11135 . . . . 5 (𝜑𝐶 ∈ ℂ)
4241, 4expcld 14048 . . . 4 (𝜑 → (𝐶𝐽) ∈ ℂ)
43 1cnd 11102 . . . 4 (𝜑 → 1 ∈ ℂ)
44 2cnd 12198 . . . 4 (𝜑 → 2 ∈ ℂ)
4522a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4642, 43, 44, 45div12d 11928 . . 3 (𝜑 → ((𝐶𝐽) · (1 / 2)) = (1 · ((𝐶𝐽) / 2)))
4742, 44, 45divcld 11892 . . . 4 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
4847mullidd 11125 . . 3 (𝜑 → (1 · ((𝐶𝐽) / 2)) = ((𝐶𝐽) / 2))
4946, 48eqtrd 2766 . 2 (𝜑 → ((𝐶𝐽) · (1 / 2)) = ((𝐶𝐽) / 2))
507, 37, 493eqtrd 2770 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  (,)cioo 13240  cfl 13689  cexp 13963  abscabs 15136  cdvds 16158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ioo 13244  df-fl 13691  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159
This theorem is referenced by:  knoppndvlem10  36555
  Copyright terms: Public domain W3C validator