Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem9 Structured version   Visualization version   GIF version

Theorem knoppndvlem9 36223
Description: Lemma for knoppndv 36237. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem9.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem9.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem9.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem9.m (𝜑𝑀 ∈ ℤ)
knoppndvlem9.n (𝜑𝑁 ∈ ℕ)
knoppndvlem9.1 (𝜑 → ¬ 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem9 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem9
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem9.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem9.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem9.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem9.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem9.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem9.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 36221 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem9.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝑀)
9 odd2np1 16343 . . . . . 6 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
105, 9syl 17 . . . . 5 (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
118, 10mpbid 231 . . . 4 (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀)
12 eqcom 2733 . . . . . . . . . . 11 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1312biimpi 215 . . . . . . . . . 10 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1413oveq1d 7439 . . . . . . . . 9 (((2 · 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1514adantl 480 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1615adantl 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
17 2cnd 12342 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 2 ∈ ℂ)
18 zcn 12615 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
1918adantl 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
2017, 19mulcld 11284 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (2 · 𝑚) ∈ ℂ)
21 1cnd 11259 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 1 ∈ ℂ)
22 2ne0 12368 . . . . . . . . . . 11 2 ≠ 0
2322a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 2 ≠ 0)
2420, 21, 17, 23divdird 12079 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 · 𝑚) / 2) + (1 / 2)))
2519, 17, 23divcan3d 12046 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚)
2625oveq1d 7439 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2)))
2724, 26eqtrd 2766 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2827adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2916, 28eqtrd 2766 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2)))
3029fveq2d 6905 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2))))
31 id 22 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ ℤ)
321, 31dnizphlfeqhlf 36179 . . . . . . 7 (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3332adantl 480 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3433adantrr 715 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3530, 34eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2))
3611, 35rexlimddv 3151 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2))
3736oveq2d 7440 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · (1 / 2)))
38 knoppndvlem9.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
3938knoppndvlem3 36217 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
4039simpld 493 . . . . . 6 (𝜑𝐶 ∈ ℝ)
4140recnd 11292 . . . . 5 (𝜑𝐶 ∈ ℂ)
4241, 4expcld 14165 . . . 4 (𝜑 → (𝐶𝐽) ∈ ℂ)
43 1cnd 11259 . . . 4 (𝜑 → 1 ∈ ℂ)
44 2cnd 12342 . . . 4 (𝜑 → 2 ∈ ℂ)
4522a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4642, 43, 44, 45div12d 12077 . . 3 (𝜑 → ((𝐶𝐽) · (1 / 2)) = (1 · ((𝐶𝐽) / 2)))
4742, 44, 45divcld 12041 . . . 4 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
4847mullidd 11282 . . 3 (𝜑 → (1 · ((𝐶𝐽) / 2)) = ((𝐶𝐽) / 2))
4946, 48eqtrd 2766 . 2 (𝜑 → ((𝐶𝐽) · (1 / 2)) = ((𝐶𝐽) / 2))
507, 37, 493eqtrd 2770 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060   class class class wbr 5153  cmpt 5236  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cmin 11494  -cneg 11495   / cdiv 11921  cn 12264  2c2 12319  0cn0 12524  cz 12610  (,)cioo 13378  cfl 13810  cexp 14081  abscabs 15239  cdvds 16256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ioo 13382  df-fl 13812  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257
This theorem is referenced by:  knoppndvlem10  36224
  Copyright terms: Public domain W3C validator