| Step | Hyp | Ref
| Expression |
| 1 | | knoppndvlem9.t |
. . 3
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| 2 | | knoppndvlem9.f |
. . 3
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| 3 | | knoppndvlem9.a |
. . 3
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
| 4 | | knoppndvlem9.j |
. . 3
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 5 | | knoppndvlem9.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | | knoppndvlem9.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 7 | 1, 2, 3, 4, 5, 6 | knoppndvlem7 36519 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) |
| 8 | | knoppndvlem9.1 |
. . . . 5
⊢ (𝜑 → ¬ 2 ∥ 𝑀) |
| 9 | | odd2np1 16378 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (¬ 2
∥ 𝑀 ↔
∃𝑚 ∈ ℤ ((2
· 𝑚) + 1) = 𝑀)) |
| 10 | 5, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 ·
𝑚) + 1) = 𝑀)) |
| 11 | 8, 10 | mpbid 232 |
. . . 4
⊢ (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀) |
| 12 | | eqcom 2744 |
. . . . . . . . . . 11
⊢ (((2
· 𝑚) + 1) = 𝑀 ↔ 𝑀 = ((2 · 𝑚) + 1)) |
| 13 | 12 | biimpi 216 |
. . . . . . . . . 10
⊢ (((2
· 𝑚) + 1) = 𝑀 → 𝑀 = ((2 · 𝑚) + 1)) |
| 14 | 13 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((2
· 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
| 15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ ((2
· 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
| 16 | 15 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2)) |
| 17 | | 2cnd 12344 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 2 ∈
ℂ) |
| 18 | | zcn 12618 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
ℂ) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
| 20 | 17, 19 | mulcld 11281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (2 · 𝑚) ∈
ℂ) |
| 21 | | 1cnd 11256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 1 ∈
ℂ) |
| 22 | | 2ne0 12370 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
| 23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 2 ≠
0) |
| 24 | 20, 21, 17, 23 | divdird 12081 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 ·
𝑚) / 2) + (1 /
2))) |
| 25 | 19, 17, 23 | divcan3d 12048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚) |
| 26 | 25 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2))) |
| 27 | 24, 26 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2))) |
| 28 | 27 | adantrr 717 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2))) |
| 29 | 16, 28 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2))) |
| 30 | 29 | fveq2d 6910 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2)))) |
| 31 | | id 22 |
. . . . . . . 8
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
ℤ) |
| 32 | 1, 31 | dnizphlfeqhlf 36477 |
. . . . . . 7
⊢ (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
| 34 | 33 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2)) |
| 35 | 30, 34 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2)) |
| 36 | 11, 35 | rexlimddv 3161 |
. . 3
⊢ (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2)) |
| 37 | 36 | oveq2d 7447 |
. 2
⊢ (𝜑 → ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶↑𝐽) · (1 / 2))) |
| 38 | | knoppndvlem9.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| 39 | 38 | knoppndvlem3 36515 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 40 | 39 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 41 | 40 | recnd 11289 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 42 | 41, 4 | expcld 14186 |
. . . 4
⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
| 43 | | 1cnd 11256 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
| 44 | | 2cnd 12344 |
. . . 4
⊢ (𝜑 → 2 ∈
ℂ) |
| 45 | 22 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ≠ 0) |
| 46 | 42, 43, 44, 45 | div12d 12079 |
. . 3
⊢ (𝜑 → ((𝐶↑𝐽) · (1 / 2)) = (1 · ((𝐶↑𝐽) / 2))) |
| 47 | 42, 44, 45 | divcld 12043 |
. . . 4
⊢ (𝜑 → ((𝐶↑𝐽) / 2) ∈ ℂ) |
| 48 | 47 | mullidd 11279 |
. . 3
⊢ (𝜑 → (1 · ((𝐶↑𝐽) / 2)) = ((𝐶↑𝐽) / 2)) |
| 49 | 46, 48 | eqtrd 2777 |
. 2
⊢ (𝜑 → ((𝐶↑𝐽) · (1 / 2)) = ((𝐶↑𝐽) / 2)) |
| 50 | 7, 37, 49 | 3eqtrd 2781 |
1
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) |