![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drgextgsum | Structured version Visualization version GIF version |
Description: Group sum in a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
Ref | Expression |
---|---|
drgext.b | ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
drgext.1 | ⊢ (𝜑 → 𝐸 ∈ DivRing) |
drgext.2 | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
drgext.f | ⊢ 𝐹 = (𝐸 ↾s 𝑈) |
drgext.3 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
drgextgsum.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
drgextgsum | ⊢ (𝜑 → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ 𝑌)) = (𝐵 Σg (𝑖 ∈ 𝑋 ↦ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | . 2 ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) | |
2 | drgextgsum.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | mptexd 7256 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑋 ↦ 𝑌) ∈ V) |
4 | drgext.1 | . 2 ⊢ (𝜑 → 𝐸 ∈ DivRing) | |
5 | drgext.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
6 | drgext.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) | |
7 | drgext.f | . . . 4 ⊢ 𝐹 = (𝐸 ↾s 𝑈) | |
8 | 1, 7 | sralvec 33592 | . . 3 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec) |
9 | 4, 5, 6, 8 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐵 ∈ LVec) |
10 | eqid 2740 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
11 | 10 | subrgss 20594 | . . 3 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
13 | 1, 3, 4, 9, 12 | gsumsra 33022 | 1 ⊢ (𝜑 → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ 𝑌)) = (𝐵 Σg (𝑖 ∈ 𝑋 ↦ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ↦ cmpt 5249 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 ↾s cress 17281 Σg cgsu 17494 SubRingcsubrg 20589 DivRingcdr 20745 LVecclvec 21118 subringAlg csra 21187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-seq 14047 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-sca 17321 df-vsca 17322 df-ip 17323 df-0g 17495 df-gsum 17496 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18970 df-subg 19157 df-mgp 20156 df-ur 20203 df-ring 20256 df-subrg 20591 df-lmod 20876 df-lvec 21119 df-sra 21189 |
This theorem is referenced by: fedgmullem1 33634 fedgmullem2 33635 extdg1id 33668 |
Copyright terms: Public domain | W3C validator |