MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngmul0orOLD Structured version   Visualization version   GIF version

Theorem drngmul0orOLD 20783
Description: Obsolete version of drngmul0or 20782 as of 25-Jun-2025. (Contributed by NM, 8-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
drngmuleq0.b 𝐵 = (Base‘𝑅)
drngmuleq0.o 0 = (0g𝑅)
drngmuleq0.t · = (.r𝑅)
drngmuleq0.r (𝜑𝑅 ∈ DivRing)
drngmuleq0.x (𝜑𝑋𝐵)
drngmuleq0.y (𝜑𝑌𝐵)
Assertion
Ref Expression
drngmul0orOLD (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem drngmul0orOLD
StepHypRef Expression
1 df-ne 2947 . . . . 5 (𝑋0 ↔ ¬ 𝑋 = 0 )
2 oveq2 7456 . . . . . . . 8 ((𝑋 · 𝑌) = 0 → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
32ad2antlr 726 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
4 drngmuleq0.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ DivRing)
54adantr 480 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑅 ∈ DivRing)
6 drngmuleq0.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋𝐵)
8 simpr 484 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋0 )
9 drngmuleq0.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
10 drngmuleq0.o . . . . . . . . . . . 12 0 = (0g𝑅)
11 drngmuleq0.t . . . . . . . . . . . 12 · = (.r𝑅)
12 eqid 2740 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
13 eqid 2740 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
149, 10, 11, 12, 13drnginvrl 20778 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
155, 7, 8, 14syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
1615oveq1d 7463 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = ((1r𝑅) · 𝑌))
17 drngring 20758 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
184, 17syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑅 ∈ Ring)
209, 10, 13drnginvrcl 20775 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
215, 7, 8, 20syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
22 drngmuleq0.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑌𝐵)
249, 11ringass 20280 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
2519, 21, 7, 23, 24syl13anc 1372 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
269, 11, 12ringlidm 20292 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
2718, 22, 26syl2anc 583 . . . . . . . . . 10 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑋0 ) → ((1r𝑅) · 𝑌) = 𝑌)
2916, 25, 283eqtr3d 2788 . . . . . . . 8 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3029adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → 𝑅 ∈ Ring)
3231adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑅 ∈ Ring)
3321adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
349, 11, 10ringrz 20317 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑋) ∈ 𝐵) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
3532, 33, 34syl2anc 583 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
363, 30, 353eqtr3d 2788 . . . . . 6 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑌 = 0 )
3736ex 412 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋0𝑌 = 0 ))
381, 37biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (¬ 𝑋 = 0𝑌 = 0 ))
3938orrd 862 . . 3 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋 = 0𝑌 = 0 ))
4039ex 412 . 2 (𝜑 → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
419, 11, 10ringlz 20316 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
4218, 22, 41syl2anc 583 . . . 4 (𝜑 → ( 0 · 𝑌) = 0 )
43 oveq1 7455 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
4443eqeq1d 2742 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
4542, 44syl5ibrcom 247 . . 3 (𝜑 → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
469, 11, 10ringrz 20317 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
4718, 6, 46syl2anc 583 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
48 oveq2 7456 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
4948eqeq1d 2742 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
5047, 49syl5ibrcom 247 . . 3 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
5145, 50jaod 858 . 2 (𝜑 → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
5240, 51impbid 212 1 (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  invrcinvr 20413  DivRingcdr 20751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator