MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbase Structured version   Visualization version   GIF version

Theorem dsmmbase 20501
Description: Base set of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmbase (𝑅𝑉𝐵 = (Base‘(𝑆m 𝑅)))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmbase
StepHypRef Expression
1 elex 3429 . 2 (𝑅𝑉𝑅 ∈ V)
2 dsmmval.b . . . . 5 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
32ssrab3 3987 . . . 4 𝐵 ⊆ (Base‘(𝑆Xs𝑅))
4 eqid 2759 . . . . 5 ((𝑆Xs𝑅) ↾s 𝐵) = ((𝑆Xs𝑅) ↾s 𝐵)
5 eqid 2759 . . . . 5 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
64, 5ressbas2 16614 . . . 4 (𝐵 ⊆ (Base‘(𝑆Xs𝑅)) → 𝐵 = (Base‘((𝑆Xs𝑅) ↾s 𝐵)))
73, 6ax-mp 5 . . 3 𝐵 = (Base‘((𝑆Xs𝑅) ↾s 𝐵))
82dsmmval 20500 . . . 4 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
98fveq2d 6663 . . 3 (𝑅 ∈ V → (Base‘(𝑆m 𝑅)) = (Base‘((𝑆Xs𝑅) ↾s 𝐵)))
107, 9eqtr4id 2813 . 2 (𝑅 ∈ V → 𝐵 = (Base‘(𝑆m 𝑅)))
111, 10syl 17 1 (𝑅𝑉𝐵 = (Base‘(𝑆m 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  wne 2952  {crab 3075  Vcvv 3410  wss 3859  dom cdm 5525  cfv 6336  (class class class)co 7151  Fincfn 8528  Basecbs 16542  s cress 16543  0gc0g 16772  Xscprds 16778  m cdsmm 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8940  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-fz 12941  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-hom 16648  df-cco 16649  df-prds 16780  df-dsmm 20498
This theorem is referenced by:  dsmmbas2  20503  dsmmelbas  20505  dsmmsubg  20509
  Copyright terms: Public domain W3C validator