MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Visualization version   GIF version

Theorem 0dgrb 26151
Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))

Proof of Theorem 0dgrb
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2729 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
31, 2coeid 26143 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
43adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
5 simplr 768 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (deg‘𝐹) = 0)
65oveq2d 7403 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (0...(deg‘𝐹)) = (0...0))
76sumeq1d 15666 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
8 0z 12540 . . . . . . . . . 10 0 ∈ ℤ
9 exp0 14030 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
1110oveq2d 7403 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = (((coeff‘𝐹)‘0) · 1))
121coef3 26137 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
13 0nn0 12457 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
14 ffvelcdm 7053 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ ℂ)
1512, 13, 14sylancl 586 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹)‘0) ∈ ℂ)
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
1716mulridd 11191 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
1811, 17eqtrd 2764 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = ((coeff‘𝐹)‘0))
1918, 16eqeltrd 2828 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ)
20 fveq2 6858 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
21 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
2220, 21oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2322fsum1 15713 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
248, 19, 23sylancr 587 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2524, 18eqtrd 2764 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
267, 25eqtrd 2764 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
2726mpteq2dva 5200 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
284, 27eqtrd 2764 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
29 fconstmpt 5700 . . . . 5 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
3028, 29eqtr4di 2782 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {((coeff‘𝐹)‘0)}))
3130fveq1d 6860 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((ℂ × {((coeff‘𝐹)‘0)})‘0))
32 0cn 11166 . . . . . . . 8 0 ∈ ℂ
33 fvex 6871 . . . . . . . . 9 ((coeff‘𝐹)‘0) ∈ V
3433fvconst2 7178 . . . . . . . 8 (0 ∈ ℂ → ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0))
3532, 34ax-mp 5 . . . . . . 7 ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0)
3631, 35eqtrdi 2780 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((coeff‘𝐹)‘0))
3736sneqd 4601 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → {(𝐹‘0)} = {((coeff‘𝐹)‘0)})
3837xpeq2d 5668 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {((coeff‘𝐹)‘0)}))
3930, 38eqtr4d 2767 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
4039ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 → 𝐹 = (ℂ × {(𝐹‘0)})))
41 plyf 26103 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
42 ffvelcdm 7053 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
4341, 32, 42sylancl 586 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) ∈ ℂ)
44 0dgr 26150 . . . 4 ((𝐹‘0) ∈ ℂ → (deg‘(ℂ × {(𝐹‘0)})) = 0)
4543, 44syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘(ℂ × {(𝐹‘0)})) = 0)
46 fveqeq2 6867 . . 3 (𝐹 = (ℂ × {(𝐹‘0)}) → ((deg‘𝐹) = 0 ↔ (deg‘(ℂ × {(𝐹‘0)})) = 0))
4745, 46syl5ibrcom 247 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = (ℂ × {(𝐹‘0)}) → (deg‘𝐹) = 0))
4840, 47impbid 212 1 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4589  cmpt 5188   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  0cn0 12442  cz 12529  ...cfz 13468  cexp 14026  Σcsu 15652  Polycply 26089  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  dgrnznn  26152  dgreq0  26171  dgrcolem2  26180  dgrco  26181  plyrem  26213  fta1  26216  aaliou2  26248
  Copyright terms: Public domain W3C validator