MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Visualization version   GIF version

Theorem 0dgrb 26149
Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))

Proof of Theorem 0dgrb
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2729 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
31, 2coeid 26141 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
43adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
5 simplr 768 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (deg‘𝐹) = 0)
65oveq2d 7365 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (0...(deg‘𝐹)) = (0...0))
76sumeq1d 15607 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
8 0z 12482 . . . . . . . . . 10 0 ∈ ℤ
9 exp0 13972 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
1110oveq2d 7365 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = (((coeff‘𝐹)‘0) · 1))
121coef3 26135 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
13 0nn0 12399 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
14 ffvelcdm 7015 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ ℂ)
1512, 13, 14sylancl 586 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹)‘0) ∈ ℂ)
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
1716mulridd 11132 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
1811, 17eqtrd 2764 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = ((coeff‘𝐹)‘0))
1918, 16eqeltrd 2828 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ)
20 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
21 oveq2 7357 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
2220, 21oveq12d 7367 . . . . . . . . . . 11 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2322fsum1 15654 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
248, 19, 23sylancr 587 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2524, 18eqtrd 2764 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
267, 25eqtrd 2764 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
2726mpteq2dva 5185 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
284, 27eqtrd 2764 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
29 fconstmpt 5681 . . . . 5 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
3028, 29eqtr4di 2782 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {((coeff‘𝐹)‘0)}))
3130fveq1d 6824 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((ℂ × {((coeff‘𝐹)‘0)})‘0))
32 0cn 11107 . . . . . . . 8 0 ∈ ℂ
33 fvex 6835 . . . . . . . . 9 ((coeff‘𝐹)‘0) ∈ V
3433fvconst2 7140 . . . . . . . 8 (0 ∈ ℂ → ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0))
3532, 34ax-mp 5 . . . . . . 7 ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0)
3631, 35eqtrdi 2780 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((coeff‘𝐹)‘0))
3736sneqd 4589 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → {(𝐹‘0)} = {((coeff‘𝐹)‘0)})
3837xpeq2d 5649 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {((coeff‘𝐹)‘0)}))
3930, 38eqtr4d 2767 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
4039ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 → 𝐹 = (ℂ × {(𝐹‘0)})))
41 plyf 26101 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
42 ffvelcdm 7015 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
4341, 32, 42sylancl 586 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) ∈ ℂ)
44 0dgr 26148 . . . 4 ((𝐹‘0) ∈ ℂ → (deg‘(ℂ × {(𝐹‘0)})) = 0)
4543, 44syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘(ℂ × {(𝐹‘0)})) = 0)
46 fveqeq2 6831 . . 3 (𝐹 = (ℂ × {(𝐹‘0)}) → ((deg‘𝐹) = 0 ↔ (deg‘(ℂ × {(𝐹‘0)})) = 0))
4745, 46syl5ibrcom 247 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = (ℂ × {(𝐹‘0)}) → (deg‘𝐹) = 0))
4840, 47impbid 212 1 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4577  cmpt 5173   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014  0cn0 12384  cz 12471  ...cfz 13410  cexp 13968  Σcsu 15593  Polycply 26087  coeffccoe 26089  degcdgr 26090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-coe 26093  df-dgr 26094
This theorem is referenced by:  dgrnznn  26150  dgreq0  26169  dgrcolem2  26178  dgrco  26179  plyrem  26211  fta1  26214  aaliou2  26246
  Copyright terms: Public domain W3C validator