Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Visualization version   GIF version

Theorem 0dgrb 24400
 Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))

Proof of Theorem 0dgrb
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2824 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
31, 2coeid 24392 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
43adantr 474 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
5 simplr 787 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (deg‘𝐹) = 0)
65oveq2d 6920 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (0...(deg‘𝐹)) = (0...0))
76sumeq1d 14807 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
8 0z 11714 . . . . . . . . . 10 0 ∈ ℤ
9 exp0 13157 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109adantl 475 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
1110oveq2d 6920 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = (((coeff‘𝐹)‘0) · 1))
121coef3 24386 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
13 0nn0 11634 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
14 ffvelrn 6605 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ ℂ)
1512, 13, 14sylancl 582 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹)‘0) ∈ ℂ)
1615ad2antrr 719 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
1716mulid1d 10373 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
1811, 17eqtrd 2860 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = ((coeff‘𝐹)‘0))
1918, 16eqeltrd 2905 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ)
20 fveq2 6432 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
21 oveq2 6912 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
2220, 21oveq12d 6922 . . . . . . . . . . 11 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2322fsum1 14852 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
248, 19, 23sylancr 583 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2524, 18eqtrd 2860 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
267, 25eqtrd 2860 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
2726mpteq2dva 4966 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
284, 27eqtrd 2860 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
29 fconstmpt 5397 . . . . 5 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
3028, 29syl6eqr 2878 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {((coeff‘𝐹)‘0)}))
3130fveq1d 6434 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((ℂ × {((coeff‘𝐹)‘0)})‘0))
32 0cn 10347 . . . . . . . 8 0 ∈ ℂ
33 fvex 6445 . . . . . . . . 9 ((coeff‘𝐹)‘0) ∈ V
3433fvconst2 6724 . . . . . . . 8 (0 ∈ ℂ → ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0))
3532, 34ax-mp 5 . . . . . . 7 ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0)
3631, 35syl6eq 2876 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((coeff‘𝐹)‘0))
3736sneqd 4408 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → {(𝐹‘0)} = {((coeff‘𝐹)‘0)})
3837xpeq2d 5371 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {((coeff‘𝐹)‘0)}))
3930, 38eqtr4d 2863 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
4039ex 403 . 2 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 → 𝐹 = (ℂ × {(𝐹‘0)})))
41 plyf 24352 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
42 ffvelrn 6605 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
4341, 32, 42sylancl 582 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) ∈ ℂ)
44 0dgr 24399 . . . 4 ((𝐹‘0) ∈ ℂ → (deg‘(ℂ × {(𝐹‘0)})) = 0)
4543, 44syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘(ℂ × {(𝐹‘0)})) = 0)
46 fveqeq2 6441 . . 3 (𝐹 = (ℂ × {(𝐹‘0)}) → ((deg‘𝐹) = 0 ↔ (deg‘(ℂ × {(𝐹‘0)})) = 0))
4745, 46syl5ibrcom 239 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = (ℂ × {(𝐹‘0)}) → (deg‘𝐹) = 0))
4840, 47impbid 204 1 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166  {csn 4396   ↦ cmpt 4951   × cxp 5339  ⟶wf 6118  ‘cfv 6122  (class class class)co 6904  ℂcc 10249  0cc0 10251  1c1 10252   · cmul 10256  ℕ0cn0 11617  ℤcz 11703  ...cfz 12618  ↑cexp 13153  Σcsu 14792  Polycply 24338  coeffccoe 24340  degcdgr 24341 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329  ax-addf 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-pm 8124  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-inf 8617  df-oi 8683  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-n0 11618  df-z 11704  df-uz 11968  df-rp 12112  df-fz 12619  df-fzo 12760  df-fl 12887  df-seq 13095  df-exp 13154  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-clim 14595  df-rlim 14596  df-sum 14793  df-0p 23835  df-ply 24342  df-coe 24344  df-dgr 24345 This theorem is referenced by:  dgrnznn  24401  dgreq0  24419  dgrcolem2  24428  dgrco  24429  plyrem  24458  fta1  24461  aaliou2  24493
 Copyright terms: Public domain W3C validator