MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Visualization version   GIF version

Theorem 0dgrb 25435
Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))

Proof of Theorem 0dgrb
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2733 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
31, 2coeid 25427 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
43adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
5 simplr 765 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (deg‘𝐹) = 0)
65oveq2d 7311 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (0...(deg‘𝐹)) = (0...0))
76sumeq1d 15441 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
8 0z 12358 . . . . . . . . . 10 0 ∈ ℤ
9 exp0 13814 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
1110oveq2d 7311 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = (((coeff‘𝐹)‘0) · 1))
121coef3 25421 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
13 0nn0 12276 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
14 ffvelcdm 6979 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ ℂ)
1512, 13, 14sylancl 585 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹)‘0) ∈ ℂ)
1615ad2antrr 722 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
1716mulid1d 11020 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
1811, 17eqtrd 2773 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = ((coeff‘𝐹)‘0))
1918, 16eqeltrd 2834 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ)
20 fveq2 6792 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
21 oveq2 7303 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
2220, 21oveq12d 7313 . . . . . . . . . . 11 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2322fsum1 15487 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
248, 19, 23sylancr 586 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2524, 18eqtrd 2773 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
267, 25eqtrd 2773 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
2726mpteq2dva 5177 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
284, 27eqtrd 2773 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
29 fconstmpt 5651 . . . . 5 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
3028, 29eqtr4di 2791 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {((coeff‘𝐹)‘0)}))
3130fveq1d 6794 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((ℂ × {((coeff‘𝐹)‘0)})‘0))
32 0cn 10995 . . . . . . . 8 0 ∈ ℂ
33 fvex 6805 . . . . . . . . 9 ((coeff‘𝐹)‘0) ∈ V
3433fvconst2 7099 . . . . . . . 8 (0 ∈ ℂ → ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0))
3532, 34ax-mp 5 . . . . . . 7 ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0)
3631, 35eqtrdi 2789 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((coeff‘𝐹)‘0))
3736sneqd 4576 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → {(𝐹‘0)} = {((coeff‘𝐹)‘0)})
3837xpeq2d 5621 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {((coeff‘𝐹)‘0)}))
3930, 38eqtr4d 2776 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
4039ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 → 𝐹 = (ℂ × {(𝐹‘0)})))
41 plyf 25387 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
42 ffvelcdm 6979 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
4341, 32, 42sylancl 585 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) ∈ ℂ)
44 0dgr 25434 . . . 4 ((𝐹‘0) ∈ ℂ → (deg‘(ℂ × {(𝐹‘0)})) = 0)
4543, 44syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘(ℂ × {(𝐹‘0)})) = 0)
46 fveqeq2 6801 . . 3 (𝐹 = (ℂ × {(𝐹‘0)}) → ((deg‘𝐹) = 0 ↔ (deg‘(ℂ × {(𝐹‘0)})) = 0))
4745, 46syl5ibrcom 246 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = (ℂ × {(𝐹‘0)}) → (deg‘𝐹) = 0))
4840, 47impbid 211 1 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  {csn 4564  cmpt 5160   × cxp 5589  wf 6443  cfv 6447  (class class class)co 7295  cc 10897  0cc0 10899  1c1 10900   · cmul 10904  0cn0 12261  cz 12347  ...cfz 13267  cexp 13810  Σcsu 15425  Polycply 25373  coeffccoe 25375  degcdgr 25376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-pm 8638  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-inf 9230  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-fzo 13411  df-fl 13540  df-seq 13750  df-exp 13811  df-hash 14073  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-clim 15225  df-rlim 15226  df-sum 15426  df-0p 24862  df-ply 25377  df-coe 25379  df-dgr 25380
This theorem is referenced by:  dgrnznn  25436  dgreq0  25454  dgrcolem2  25463  dgrco  25464  plyrem  25493  fta1  25496  aaliou2  25528
  Copyright terms: Public domain W3C validator