Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . . . 8
β’
(coeffβπΉ) =
(coeffβπΉ) |
2 | | eqid 2732 |
. . . . . . . 8
β’
(degβπΉ) =
(degβπΉ) |
3 | 1, 2 | coeid 25976 |
. . . . . . 7
β’ (πΉ β (Polyβπ) β πΉ = (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π§βπ)))) |
4 | 3 | adantr 481 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β πΉ = (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π§βπ)))) |
5 | | simplr 767 |
. . . . . . . . . 10
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (degβπΉ) = 0) |
6 | 5 | oveq2d 7427 |
. . . . . . . . 9
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (0...(degβπΉ)) = (0...0)) |
7 | 6 | sumeq1d 15651 |
. . . . . . . 8
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π§βπ)) = Ξ£π β (0...0)(((coeffβπΉ)βπ) Β· (π§βπ))) |
8 | | 0z 12573 |
. . . . . . . . . 10
β’ 0 β
β€ |
9 | | exp0 14035 |
. . . . . . . . . . . . . 14
β’ (π§ β β β (π§β0) = 1) |
10 | 9 | adantl 482 |
. . . . . . . . . . . . 13
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (π§β0) = 1) |
11 | 10 | oveq2d 7427 |
. . . . . . . . . . . 12
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (((coeffβπΉ)β0) Β· (π§β0)) = (((coeffβπΉ)β0) Β·
1)) |
12 | 1 | coef3 25970 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (Polyβπ) β (coeffβπΉ):β0βΆβ) |
13 | | 0nn0 12491 |
. . . . . . . . . . . . . . 15
β’ 0 β
β0 |
14 | | ffvelcdm 7083 |
. . . . . . . . . . . . . . 15
β’
(((coeffβπΉ):β0βΆβ β§ 0
β β0) β ((coeffβπΉ)β0) β β) |
15 | 12, 13, 14 | sylancl 586 |
. . . . . . . . . . . . . 14
β’ (πΉ β (Polyβπ) β ((coeffβπΉ)β0) β
β) |
16 | 15 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β ((coeffβπΉ)β0) β
β) |
17 | 16 | mulridd 11235 |
. . . . . . . . . . . 12
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (((coeffβπΉ)β0) Β· 1) =
((coeffβπΉ)β0)) |
18 | 11, 17 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (((coeffβπΉ)β0) Β· (π§β0)) = ((coeffβπΉ)β0)) |
19 | 18, 16 | eqeltrd 2833 |
. . . . . . . . . 10
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β (((coeffβπΉ)β0) Β· (π§β0)) β
β) |
20 | | fveq2 6891 |
. . . . . . . . . . . 12
β’ (π = 0 β ((coeffβπΉ)βπ) = ((coeffβπΉ)β0)) |
21 | | oveq2 7419 |
. . . . . . . . . . . 12
β’ (π = 0 β (π§βπ) = (π§β0)) |
22 | 20, 21 | oveq12d 7429 |
. . . . . . . . . . 11
β’ (π = 0 β (((coeffβπΉ)βπ) Β· (π§βπ)) = (((coeffβπΉ)β0) Β· (π§β0))) |
23 | 22 | fsum1 15697 |
. . . . . . . . . 10
β’ ((0
β β€ β§ (((coeffβπΉ)β0) Β· (π§β0)) β β) β Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· (π§βπ)) = (((coeffβπΉ)β0) Β· (π§β0))) |
24 | 8, 19, 23 | sylancr 587 |
. . . . . . . . 9
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· (π§βπ)) = (((coeffβπΉ)β0) Β· (π§β0))) |
25 | 24, 18 | eqtrd 2772 |
. . . . . . . 8
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· (π§βπ)) = ((coeffβπΉ)β0)) |
26 | 7, 25 | eqtrd 2772 |
. . . . . . 7
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β§ π§ β β) β Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π§βπ)) = ((coeffβπΉ)β0)) |
27 | 26 | mpteq2dva 5248 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β (π§ β β β¦
Ξ£π β
(0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π§βπ))) = (π§ β β β¦ ((coeffβπΉ)β0))) |
28 | 4, 27 | eqtrd 2772 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β πΉ = (π§ β β β¦ ((coeffβπΉ)β0))) |
29 | | fconstmpt 5738 |
. . . . 5
β’ (β
Γ {((coeffβπΉ)β0)}) = (π§ β β β¦ ((coeffβπΉ)β0)) |
30 | 28, 29 | eqtr4di 2790 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β πΉ = (β Γ {((coeffβπΉ)β0)})) |
31 | 30 | fveq1d 6893 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β (πΉβ0) = ((β Γ
{((coeffβπΉ)β0)})β0)) |
32 | | 0cn 11210 |
. . . . . . . 8
β’ 0 β
β |
33 | | fvex 6904 |
. . . . . . . . 9
β’
((coeffβπΉ)β0) β V |
34 | 33 | fvconst2 7207 |
. . . . . . . 8
β’ (0 β
β β ((β Γ {((coeffβπΉ)β0)})β0) = ((coeffβπΉ)β0)) |
35 | 32, 34 | ax-mp 5 |
. . . . . . 7
β’ ((β
Γ {((coeffβπΉ)β0)})β0) = ((coeffβπΉ)β0) |
36 | 31, 35 | eqtrdi 2788 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β (πΉβ0) = ((coeffβπΉ)β0)) |
37 | 36 | sneqd 4640 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β {(πΉβ0)} =
{((coeffβπΉ)β0)}) |
38 | 37 | xpeq2d 5706 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β (β Γ
{(πΉβ0)}) = (β
Γ {((coeffβπΉ)β0)})) |
39 | 30, 38 | eqtr4d 2775 |
. . 3
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) = 0) β πΉ = (β Γ {(πΉβ0)})) |
40 | 39 | ex 413 |
. 2
β’ (πΉ β (Polyβπ) β ((degβπΉ) = 0 β πΉ = (β Γ {(πΉβ0)}))) |
41 | | plyf 25936 |
. . . . 5
β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) |
42 | | ffvelcdm 7083 |
. . . . 5
β’ ((πΉ:ββΆβ β§ 0
β β) β (πΉβ0) β β) |
43 | 41, 32, 42 | sylancl 586 |
. . . 4
β’ (πΉ β (Polyβπ) β (πΉβ0) β β) |
44 | | 0dgr 25983 |
. . . 4
β’ ((πΉβ0) β β β
(degβ(β Γ {(πΉβ0)})) = 0) |
45 | 43, 44 | syl 17 |
. . 3
β’ (πΉ β (Polyβπ) β (degβ(β
Γ {(πΉβ0)})) =
0) |
46 | | fveqeq2 6900 |
. . 3
β’ (πΉ = (β Γ {(πΉβ0)}) β
((degβπΉ) = 0 β
(degβ(β Γ {(πΉβ0)})) = 0)) |
47 | 45, 46 | syl5ibrcom 246 |
. 2
β’ (πΉ β (Polyβπ) β (πΉ = (β Γ {(πΉβ0)}) β (degβπΉ) = 0)) |
48 | 40, 47 | impbid 211 |
1
β’ (πΉ β (Polyβπ) β ((degβπΉ) = 0 β πΉ = (β Γ {(πΉβ0)}))) |