MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldexp Structured version   Visualization version   GIF version

Theorem cnfldexp 21341
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))

Proof of Theorem cnfldexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (0(.g‘(mulGrp‘ℂfld))𝐴))
2 oveq2 7354 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
31, 2eqeq12d 2747 . . . 4 (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))
43imbi2d 340 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))))
5 oveq1 7353 . . . . 5 (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴))
6 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
75, 6eqeq12d 2747 . . . 4 (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦))))
9 oveq1 7353 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴))
10 oveq2 7354 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
119, 10eqeq12d 2747 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
13 oveq1 7353 . . . . 5 (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴))
14 oveq2 7354 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1513, 14eqeq12d 2747 . . . 4 (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))))
17 eqid 2731 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
18 cnfldbas 21295 . . . . . 6 ℂ = (Base‘ℂfld)
1917, 18mgpbas 20063 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 21330 . . . . . 6 1 = (1r‘ℂfld)
2117, 20ringidval 20101 . . . . 5 1 = (0g‘(mulGrp‘ℂfld))
22 eqid 2731 . . . . 5 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
2319, 21, 22mulg0 18987 . . . 4 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = 1)
24 exp0 13972 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24eqtr4d 2769 . . 3 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))
26 oveq1 7353 . . . . . 6 ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴))
27 cnring 21327 . . . . . . . . . 10 fld ∈ Ring
2817ringmgp 20157 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2927, 28ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
30 cnfldmul 21299 . . . . . . . . . . 11 · = (.r‘ℂfld)
3117, 30mgpplusg 20062 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
3219, 22, 31mulgnn0p1 18998 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3329, 32mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3433ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
35 expp1 13975 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3634, 35eqeq12d 2747 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴)))
3726, 36imbitrrid 246 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
3837expcom 413 . . . 4 (𝑦 ∈ ℕ0 → (𝐴 ∈ ℂ → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)) → (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
404, 8, 12, 16, 25, 39nn0ind 12568 . 2 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
4140impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  0cn0 12381  cexp 13968  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  fldccnfld 21291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-seq 13909  df-exp 13969  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-mulg 18981  df-cmn 19694  df-mgp 20059  df-ur 20100  df-ring 20153  df-cring 20154  df-cnfld 21292
This theorem is referenced by:  fermltlchr  21466  cmodscexp  25048  plypf1  26144  dchrfi  27193  dchrabs  27198  lgsqrlem1  27284  lgseisenlem4  27316  dchrisum0flblem1  27446  znfermltl  33331  constrelextdg2  33760  2sqr3minply  33793  cos9thpiminplylem6  33800  proot1ex  43299
  Copyright terms: Public domain W3C validator