MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldexp Structured version   Visualization version   GIF version

Theorem cnfldexp 21311
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))

Proof of Theorem cnfldexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . . 5 (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (0(.g‘(mulGrp‘ℂfld))𝐴))
2 oveq2 7357 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
31, 2eqeq12d 2745 . . . 4 (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))
43imbi2d 340 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))))
5 oveq1 7356 . . . . 5 (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴))
6 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
75, 6eqeq12d 2745 . . . 4 (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦))))
9 oveq1 7356 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴))
10 oveq2 7357 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
119, 10eqeq12d 2745 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
13 oveq1 7356 . . . . 5 (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴))
14 oveq2 7357 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1513, 14eqeq12d 2745 . . . 4 (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))))
17 eqid 2729 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
18 cnfldbas 21265 . . . . . 6 ℂ = (Base‘ℂfld)
1917, 18mgpbas 20030 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 21300 . . . . . 6 1 = (1r‘ℂfld)
2117, 20ringidval 20068 . . . . 5 1 = (0g‘(mulGrp‘ℂfld))
22 eqid 2729 . . . . 5 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
2319, 21, 22mulg0 18953 . . . 4 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = 1)
24 exp0 13972 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24eqtr4d 2767 . . 3 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))
26 oveq1 7356 . . . . . 6 ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴))
27 cnring 21297 . . . . . . . . . 10 fld ∈ Ring
2817ringmgp 20124 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2927, 28ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
30 cnfldmul 21269 . . . . . . . . . . 11 · = (.r‘ℂfld)
3117, 30mgpplusg 20029 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
3219, 22, 31mulgnn0p1 18964 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3329, 32mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3433ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
35 expp1 13975 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3634, 35eqeq12d 2745 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴)))
3726, 36imbitrrid 246 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
3837expcom 413 . . . 4 (𝑦 ∈ ℕ0 → (𝐴 ∈ ℂ → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)) → (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
404, 8, 12, 16, 25, 39nn0ind 12571 . 2 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
4140impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  0cn0 12384  cexp 13968  Mndcmnd 18608  .gcmg 18946  mulGrpcmgp 20025  Ringcrg 20118  fldccnfld 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-seq 13909  df-exp 13969  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-mulg 18947  df-cmn 19661  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-cnfld 21262
This theorem is referenced by:  fermltlchr  21436  cmodscexp  25019  plypf1  26115  dchrfi  27164  dchrabs  27169  lgsqrlem1  27255  lgseisenlem4  27287  dchrisum0flblem1  27417  znfermltl  33304  constrelextdg2  33720  2sqr3minply  33753  cos9thpiminplylem6  33760  proot1ex  43179
  Copyright terms: Public domain W3C validator