MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldexp Structured version   Visualization version   GIF version

Theorem cnfldexp 21434
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))

Proof of Theorem cnfldexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7437 . . . . 5 (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (0(.g‘(mulGrp‘ℂfld))𝐴))
2 oveq2 7438 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
31, 2eqeq12d 2750 . . . 4 (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))
43imbi2d 340 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))))
5 oveq1 7437 . . . . 5 (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴))
6 oveq2 7438 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
75, 6eqeq12d 2750 . . . 4 (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦))))
9 oveq1 7437 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴))
10 oveq2 7438 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
119, 10eqeq12d 2750 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
13 oveq1 7437 . . . . 5 (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴))
14 oveq2 7438 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1513, 14eqeq12d 2750 . . . 4 (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))))
17 eqid 2734 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
18 cnfldbas 21385 . . . . . 6 ℂ = (Base‘ℂfld)
1917, 18mgpbas 20157 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 21423 . . . . . 6 1 = (1r‘ℂfld)
2117, 20ringidval 20200 . . . . 5 1 = (0g‘(mulGrp‘ℂfld))
22 eqid 2734 . . . . 5 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
2319, 21, 22mulg0 19104 . . . 4 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = 1)
24 exp0 14102 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24eqtr4d 2777 . . 3 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))
26 oveq1 7437 . . . . . 6 ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴))
27 cnring 21420 . . . . . . . . . 10 fld ∈ Ring
2817ringmgp 20256 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2927, 28ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
30 cnfldmul 21389 . . . . . . . . . . 11 · = (.r‘ℂfld)
3117, 30mgpplusg 20155 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
3219, 22, 31mulgnn0p1 19115 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3329, 32mp3an1 1447 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3433ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
35 expp1 14105 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3634, 35eqeq12d 2750 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴)))
3726, 36imbitrrid 246 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
3837expcom 413 . . . 4 (𝑦 ∈ ℕ0 → (𝐴 ∈ ℂ → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)) → (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
404, 8, 12, 16, 25, 39nn0ind 12710 . 2 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
4140impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  0cn0 12523  cexp 14098  Mndcmnd 18759  .gcmg 19097  mulGrpcmgp 20151  Ringcrg 20250  fldccnfld 21381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-seq 14039  df-exp 14099  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-mulg 19098  df-cmn 19814  df-mgp 20152  df-ur 20199  df-ring 20252  df-cring 20253  df-cnfld 21382
This theorem is referenced by:  fermltlchr  21561  cmodscexp  25167  plypf1  26265  dchrfi  27313  dchrabs  27318  lgsqrlem1  27404  lgseisenlem4  27436  dchrisum0flblem1  27566  znfermltl  33373  constrelextdg2  33751  2sqr3minply  33752  proot1ex  43184
  Copyright terms: Public domain W3C validator