MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldexp Structured version   Visualization version   GIF version

Theorem cnfldexp 20543
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))

Proof of Theorem cnfldexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . 5 (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (0(.g‘(mulGrp‘ℂfld))𝐴))
2 oveq2 7263 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
31, 2eqeq12d 2754 . . . 4 (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))
43imbi2d 340 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))))
5 oveq1 7262 . . . . 5 (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴))
6 oveq2 7263 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
75, 6eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦))))
9 oveq1 7262 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴))
10 oveq2 7263 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
119, 10eqeq12d 2754 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
13 oveq1 7262 . . . . 5 (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴))
14 oveq2 7263 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1513, 14eqeq12d 2754 . . . 4 (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))))
17 eqid 2738 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
18 cnfldbas 20514 . . . . . 6 ℂ = (Base‘ℂfld)
1917, 18mgpbas 19641 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20535 . . . . . 6 1 = (1r‘ℂfld)
2117, 20ringidval 19654 . . . . 5 1 = (0g‘(mulGrp‘ℂfld))
22 eqid 2738 . . . . 5 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
2319, 21, 22mulg0 18622 . . . 4 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = 1)
24 exp0 13714 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24eqtr4d 2781 . . 3 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))
26 oveq1 7262 . . . . . 6 ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴))
27 cnring 20532 . . . . . . . . . 10 fld ∈ Ring
2817ringmgp 19704 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2927, 28ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
30 cnfldmul 20516 . . . . . . . . . . 11 · = (.r‘ℂfld)
3117, 30mgpplusg 19639 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
3219, 22, 31mulgnn0p1 18630 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3329, 32mp3an1 1446 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3433ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
35 expp1 13717 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3634, 35eqeq12d 2754 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴)))
3726, 36syl5ibr 245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
3837expcom 413 . . . 4 (𝑦 ∈ ℕ0 → (𝐴 ∈ ℂ → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)) → (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
404, 8, 12, 16, 25, 39nn0ind 12345 . 2 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
4140impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cexp 13710  Mndcmnd 18300  .gcmg 18615  mulGrpcmgp 19635  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mulg 18616  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-cnfld 20511
This theorem is referenced by:  cmodscexp  24190  plypf1  25278  dchrfi  26308  dchrabs  26313  lgsqrlem1  26399  lgseisenlem4  26431  dchrisum0flblem1  26561  znfermltl  31464  proot1ex  40942
  Copyright terms: Public domain W3C validator