Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oddvds2 | Structured version Visualization version GIF version |
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
oddvds2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ (♯‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl2.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odcl2.2 | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
3 | eqid 2738 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
5 | 1, 2, 3, 4 | dfod2 19171 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0)) |
6 | 5 | 3adant2 1130 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0)) |
7 | simp2 1136 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ Fin) | |
8 | 1, 3, 4 | cycsubgcl 18825 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
9 | 8 | 3adant2 1130 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
10 | 9 | simpld 495 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺)) |
11 | 1 | subgss 18756 | . . . . . 6 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) |
13 | 7, 12 | ssfid 9042 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
14 | 13 | iftrued 4467 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
15 | 6, 14 | eqtrd 2778 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
16 | 1 | lagsubg 18818 | . . 3 ⊢ ((ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))) ∥ (♯‘𝑋)) |
17 | 10, 7, 16 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))) ∥ (♯‘𝑋)) |
18 | 15, 17 | eqbrtrd 5096 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ (♯‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 0cc0 10871 ℤcz 12319 ♯chash 14044 ∥ cdvds 15963 Basecbs 16912 Grpcgrp 18577 .gcmg 18700 SubGrpcsubg 18749 odcod 19132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-eqg 18754 df-od 19136 |
This theorem is referenced by: odsubdvds 19176 gexcl2 19194 gexdvds3 19195 pgpfi1 19200 prmcyg 19495 lt6abl 19496 ablfacrp 19669 pgpfac1lem2 19678 dchrfi 26403 dchrabs 26408 |
Copyright terms: Public domain | W3C validator |