Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oddvds2 | Structured version Visualization version GIF version |
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
oddvds2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ (♯‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl2.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odcl2.2 | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
3 | eqid 2738 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
5 | 1, 2, 3, 4 | dfod2 19086 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0)) |
6 | 5 | 3adant2 1129 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0)) |
7 | simp2 1135 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ Fin) | |
8 | 1, 3, 4 | cycsubgcl 18740 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
9 | 8 | 3adant2 1129 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
10 | 9 | simpld 494 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺)) |
11 | 1 | subgss 18671 | . . . . . 6 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) |
13 | 7, 12 | ssfid 8971 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
14 | 13 | iftrued 4464 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))), 0) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
15 | 6, 14 | eqtrd 2778 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)))) |
16 | 1 | lagsubg 18733 | . . 3 ⊢ ((ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))) ∥ (♯‘𝑋)) |
17 | 10, 7, 16 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴))) ∥ (♯‘𝑋)) |
18 | 15, 17 | eqbrtrd 5092 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ (♯‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 ℤcz 12249 ♯chash 13972 ∥ cdvds 15891 Basecbs 16840 Grpcgrp 18492 .gcmg 18615 SubGrpcsubg 18664 odcod 19047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-dvds 15892 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-eqg 18669 df-od 19051 |
This theorem is referenced by: odsubdvds 19091 gexcl2 19109 gexdvds3 19110 pgpfi1 19115 prmcyg 19410 lt6abl 19411 ablfacrp 19584 pgpfac1lem2 19593 dchrfi 26308 dchrabs 26313 |
Copyright terms: Public domain | W3C validator |