MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds2 Structured version   Visualization version   GIF version

Theorem oddvds2 19552
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
odcl2.1 𝑋 = (Base‘𝐺)
odcl2.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
oddvds2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (♯‘𝑋))

Proof of Theorem oddvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odcl2.1 . . . . 5 𝑋 = (Base‘𝐺)
2 odcl2.2 . . . . 5 𝑂 = (od‘𝐺)
3 eqid 2736 . . . . 5 (.g𝐺) = (.g𝐺)
4 eqid 2736 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))
51, 2, 3, 4dfod2 19550 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
653adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
7 simp2 1137 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → 𝑋 ∈ Fin)
81, 3, 4cycsubgcl 19194 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
983adant2 1131 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
109simpld 494 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺))
111subgss 19115 . . . . . 6 (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
137, 12ssfid 9278 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
1413iftrued 4513 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
156, 14eqtrd 2771 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
161lagsubg 19183 . . 3 ((ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (♯‘𝑋))
1710, 7, 16syl2anc 584 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (♯‘𝑋))
1815, 17eqbrtrd 5146 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (♯‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  cz 12593  chash 14353  cdvds 16277  Basecbs 17233  Grpcgrp 18921  .gcmg 19055  SubGrpcsubg 19108  odcod 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-eqg 19113  df-od 19514
This theorem is referenced by:  odsubdvds  19557  gexcl2  19575  gexdvds3  19576  pgpfi1  19581  prmcyg  19880  lt6abl  19881  ablfacrp  20054  pgpfac1lem2  20063  dchrfi  27223  dchrabs  27228  unitscyglem4  42216
  Copyright terms: Public domain W3C validator