MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds2 Structured version   Visualization version   GIF version

Theorem oddvds2 19173
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
odcl2.1 𝑋 = (Base‘𝐺)
odcl2.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
oddvds2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (♯‘𝑋))

Proof of Theorem oddvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odcl2.1 . . . . 5 𝑋 = (Base‘𝐺)
2 odcl2.2 . . . . 5 𝑂 = (od‘𝐺)
3 eqid 2738 . . . . 5 (.g𝐺) = (.g𝐺)
4 eqid 2738 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))
51, 2, 3, 4dfod2 19171 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
653adant2 1130 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
7 simp2 1136 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → 𝑋 ∈ Fin)
81, 3, 4cycsubgcl 18825 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
983adant2 1130 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
109simpld 495 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺))
111subgss 18756 . . . . . 6 (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
137, 12ssfid 9042 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
1413iftrued 4467 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
156, 14eqtrd 2778 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
161lagsubg 18818 . . 3 ((ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (♯‘𝑋))
1710, 7, 16syl2anc 584 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (♯‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (♯‘𝑋))
1815, 17eqbrtrd 5096 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (♯‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  cz 12319  chash 14044  cdvds 15963  Basecbs 16912  Grpcgrp 18577  .gcmg 18700  SubGrpcsubg 18749  odcod 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-eqg 18754  df-od 19136
This theorem is referenced by:  odsubdvds  19176  gexcl2  19194  gexdvds3  19195  pgpfi1  19200  prmcyg  19495  lt6abl  19496  ablfacrp  19669  pgpfac1lem2  19678  dchrfi  26403  dchrabs  26408
  Copyright terms: Public domain W3C validator