![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexdvds2 | Structured version Visualization version GIF version |
Description: An integer divides the group exponent iff it divides all the group orders. In other words, the group exponent is the LCM of the orders of all the elements. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexdvds2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexod.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | gexod.2 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
3 | eqid 2735 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 1, 2, 3, 4 | gexdvds 19617 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
6 | gexod.3 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
7 | 1, 6, 3, 4 | oddvds 19580 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
8 | 7 | 3expa 1117 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 8 | an32s 652 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
10 | 9 | ralbidva 3174 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
11 | 5, 10 | bitr4d 282 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 ∥ cdvds 16287 Basecbs 17245 0gc0g 17486 Grpcgrp 18964 .gcmg 19098 odcod 19557 gExcgex 19558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-od 19561 df-gex 19562 |
This theorem is referenced by: gexdvds3 19623 gexexlem 19885 lt6abl 19928 |
Copyright terms: Public domain | W3C validator |