![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1sub | Structured version Visualization version GIF version |
Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1suble.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1suble.m | ⊢ − = (-g‘𝑌) |
deg1suble.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1suble.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sub.l | ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) |
Ref | Expression |
---|---|
deg1sub | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1suble.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | deg1suble.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | deg1suble.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
4 | eqid 2772 | . . . . 5 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
5 | eqid 2772 | . . . . 5 ⊢ (invg‘𝑌) = (invg‘𝑌) | |
6 | deg1suble.m | . . . . 5 ⊢ − = (-g‘𝑌) | |
7 | 3, 4, 5, 6 | grpsubval 17930 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
8 | 1, 2, 7 | syl2anc 576 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
9 | 8 | fveq2d 6497 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)))) |
10 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | deg1addle.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 10 | ply1ring 20113 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
14 | ringgrp 19019 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Grp) |
16 | 3, 5 | grpinvcl 17932 | . . . 4 ⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
17 | 15, 2, 16 | syl2anc 576 | . . 3 ⊢ (𝜑 → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
18 | 10, 11, 12, 3, 5, 2 | deg1invg 24397 | . . . 4 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) = (𝐷‘𝐺)) |
19 | deg1sub.l | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) | |
20 | 18, 19 | eqbrtrd 4945 | . . 3 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) < (𝐷‘𝐹)) |
21 | 10, 11, 12, 3, 4, 1, 17, 20 | deg1add 24394 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) = (𝐷‘𝐹)) |
22 | 9, 21 | eqtrd 2808 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 < clt 10468 Basecbs 16333 +gcplusg 16415 Grpcgrp 17885 invgcminusg 17886 -gcsg 17887 Ringcrg 19014 Poly1cpl1 20042 deg1 cdg1 24345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 ax-addf 10408 ax-mulf 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-ofr 7222 df-om 7391 df-1st 7495 df-2nd 7496 df-supp 7628 df-tpos 7689 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-2o 7900 df-oadd 7903 df-er 8083 df-map 8202 df-pm 8203 df-ixp 8254 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-fsupp 8623 df-sup 8695 df-oi 8763 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-dec 11906 df-uz 12053 df-fz 12703 df-fzo 12844 df-seq 13179 df-hash 13500 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-sca 16431 df-vsca 16432 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-0g 16565 df-gsum 16566 df-mre 16709 df-mrc 16710 df-acs 16712 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-mhm 17797 df-submnd 17798 df-grp 17888 df-minusg 17889 df-sbg 17890 df-mulg 18006 df-subg 18054 df-ghm 18121 df-cntz 18212 df-cmn 18662 df-abl 18663 df-mgp 18957 df-ur 18969 df-ring 19016 df-cring 19017 df-oppr 19090 df-dvdsr 19108 df-unit 19109 df-invr 19139 df-subrg 19250 df-lmod 19352 df-lss 19420 df-rlreg 19771 df-psr 19844 df-mpl 19846 df-opsr 19848 df-psr1 20045 df-ply1 20047 df-coe1 20048 df-cnfld 20242 df-mdeg 24346 df-deg1 24347 |
This theorem is referenced by: ply1remlem 24453 lgsqrlem4 25621 idomrootle 39191 |
Copyright terms: Public domain | W3C validator |