Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1sub | Structured version Visualization version GIF version |
Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1suble.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1suble.m | ⊢ − = (-g‘𝑌) |
deg1suble.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1suble.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sub.l | ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) |
Ref | Expression |
---|---|
deg1sub | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1suble.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | deg1suble.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | deg1suble.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
4 | eqid 2739 | . . . . 5 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
5 | eqid 2739 | . . . . 5 ⊢ (invg‘𝑌) = (invg‘𝑌) | |
6 | deg1suble.m | . . . . 5 ⊢ − = (-g‘𝑌) | |
7 | 3, 4, 5, 6 | grpsubval 18606 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
8 | 1, 2, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
9 | 8 | fveq2d 6772 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)))) |
10 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | deg1addle.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 10 | ply1ring 21400 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
14 | ringgrp 19769 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Grp) |
16 | 3, 5 | grpinvcl 18608 | . . . 4 ⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
17 | 15, 2, 16 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
18 | 10, 11, 12, 3, 5, 2 | deg1invg 25252 | . . . 4 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) = (𝐷‘𝐺)) |
19 | deg1sub.l | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) | |
20 | 18, 19 | eqbrtrd 5100 | . . 3 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) < (𝐷‘𝐹)) |
21 | 10, 11, 12, 3, 4, 1, 17, 20 | deg1add 25249 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) = (𝐷‘𝐹)) |
22 | 9, 21 | eqtrd 2779 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 < clt 10993 Basecbs 16893 +gcplusg 16943 Grpcgrp 18558 invgcminusg 18559 -gcsg 18560 Ringcrg 19764 Poly1cpl1 21329 deg1 cdg1 25197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-subrg 20003 df-lmod 20106 df-lss 20175 df-rlreg 20535 df-cnfld 20579 df-psr 21093 df-mpl 21095 df-opsr 21097 df-psr1 21332 df-ply1 21334 df-coe1 21335 df-mdeg 25198 df-deg1 25199 |
This theorem is referenced by: ply1remlem 25308 lgsqrlem4 26478 idomrootle 41000 |
Copyright terms: Public domain | W3C validator |