![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1sub | Structured version Visualization version GIF version |
Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1suble.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1suble.m | ⊢ − = (-g‘𝑌) |
deg1suble.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1suble.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sub.l | ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) |
Ref | Expression |
---|---|
deg1sub | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1suble.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | deg1suble.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | deg1suble.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
4 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
5 | eqid 2730 | . . . . 5 ⊢ (invg‘𝑌) = (invg‘𝑌) | |
6 | deg1suble.m | . . . . 5 ⊢ − = (-g‘𝑌) | |
7 | 3, 4, 5, 6 | grpsubval 18906 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
8 | 1, 2, 7 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
9 | 8 | fveq2d 6894 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)))) |
10 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | deg1addle.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 10 | ply1ring 21990 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
14 | ringgrp 20132 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Grp) |
16 | 3, 5 | grpinvcl 18908 | . . . 4 ⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
17 | 15, 2, 16 | syl2anc 582 | . . 3 ⊢ (𝜑 → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
18 | 10, 11, 12, 3, 5, 2 | deg1invg 25859 | . . . 4 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) = (𝐷‘𝐺)) |
19 | deg1sub.l | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) | |
20 | 18, 19 | eqbrtrd 5169 | . . 3 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) < (𝐷‘𝐹)) |
21 | 10, 11, 12, 3, 4, 1, 17, 20 | deg1add 25856 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) = (𝐷‘𝐹)) |
22 | 9, 21 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 class class class wbr 5147 ‘cfv 6542 (class class class)co 7411 < clt 11252 Basecbs 17148 +gcplusg 17201 Grpcgrp 18855 invgcminusg 18856 -gcsg 18857 Ringcrg 20127 Poly1cpl1 21920 deg1 cdg1 25804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-subrng 20434 df-subrg 20459 df-lmod 20616 df-lss 20687 df-rlreg 21099 df-cnfld 21145 df-psr 21681 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-ply1 21925 df-coe1 21926 df-mdeg 25805 df-deg1 25806 |
This theorem is referenced by: ply1remlem 25915 lgsqrlem4 27088 idomrootle 42239 |
Copyright terms: Public domain | W3C validator |