Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1suble | Structured version Visualization version GIF version |
Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1suble.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1suble.m | ⊢ − = (-g‘𝑌) |
deg1suble.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1suble.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
deg1suble | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
2 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | deg1addle.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | deg1suble.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
5 | eqid 2738 | . . 3 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
6 | deg1suble.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | 1 | ply1ring 21182 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
8 | ringgrp 19580 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
9 | 3, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Grp) |
10 | deg1suble.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | eqid 2738 | . . . . 5 ⊢ (invg‘𝑌) = (invg‘𝑌) | |
12 | 4, 11 | grpinvcl 18428 | . . . 4 ⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
13 | 9, 10, 12 | syl2anc 587 | . . 3 ⊢ (𝜑 → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
14 | 1, 2, 3, 4, 5, 6, 13 | deg1addle 25012 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) ≤ if((𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘𝐹))) |
15 | deg1suble.m | . . . . 5 ⊢ − = (-g‘𝑌) | |
16 | 4, 5, 11, 15 | grpsubval 18426 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
17 | 6, 10, 16 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
18 | 17 | fveq2d 6730 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)))) |
19 | 1, 2, 3, 4, 11, 10 | deg1invg 25017 | . . . . 5 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) = (𝐷‘𝐺)) |
20 | 19 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) = (𝐷‘((invg‘𝑌)‘𝐺))) |
21 | 20 | breq2d 5074 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐺) ↔ (𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)))) |
22 | 21, 20 | ifbieq1d 4472 | . 2 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) = if((𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘𝐹))) |
23 | 14, 18, 22 | 3brtr4d 5094 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 ifcif 4448 class class class wbr 5062 ‘cfv 6389 (class class class)co 7222 ≤ cle 10881 Basecbs 16773 +gcplusg 16815 Grpcgrp 18378 invgcminusg 18379 -gcsg 18380 Ringcrg 19575 Poly1cpl1 21111 deg1 cdg1 24962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 ax-addf 10821 ax-mulf 10822 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-se 5519 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-isom 6398 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-of 7478 df-ofr 7479 df-om 7654 df-1st 7770 df-2nd 7771 df-supp 7913 df-tpos 7977 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-pm 8520 df-ixp 8588 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-fsupp 8999 df-sup 9071 df-oi 9139 df-card 9568 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-7 11911 df-8 11912 df-9 11913 df-n0 12104 df-z 12190 df-dec 12307 df-uz 12452 df-fz 13109 df-fzo 13252 df-seq 13588 df-hash 13910 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-starv 16830 df-sca 16831 df-vsca 16832 df-tset 16834 df-ple 16835 df-ds 16837 df-unif 16838 df-0g 16959 df-gsum 16960 df-mre 17102 df-mrc 17103 df-acs 17105 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-mhm 18231 df-submnd 18232 df-grp 18381 df-minusg 18382 df-sbg 18383 df-mulg 18502 df-subg 18553 df-ghm 18633 df-cntz 18724 df-cmn 19185 df-abl 19186 df-mgp 19518 df-ur 19530 df-ring 19577 df-cring 19578 df-oppr 19654 df-dvdsr 19672 df-unit 19673 df-invr 19703 df-subrg 19811 df-lmod 19914 df-lss 19982 df-rlreg 20334 df-cnfld 20377 df-psr 20881 df-mpl 20883 df-opsr 20885 df-psr1 21114 df-ply1 21116 df-mdeg 24963 df-deg1 24964 |
This theorem is referenced by: deg1sublt 25021 ply1divmo 25046 |
Copyright terms: Public domain | W3C validator |