| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1suble | Structured version Visualization version GIF version | ||
| Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| deg1addle.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1suble.b | ⊢ 𝐵 = (Base‘𝑌) |
| deg1suble.m | ⊢ − = (-g‘𝑌) |
| deg1suble.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| deg1suble.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| deg1suble | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 2 | deg1addle.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | deg1addle.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | deg1suble.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 5 | eqid 2729 | . . 3 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 6 | deg1suble.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | 1 | ply1ring 22130 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
| 8 | ringgrp 20123 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
| 9 | 3, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Grp) |
| 10 | deg1suble.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑌) = (invg‘𝑌) | |
| 12 | 4, 11 | grpinvcl 18866 | . . . 4 ⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
| 13 | 9, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
| 14 | 1, 2, 3, 4, 5, 6, 13 | deg1addle 26004 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) ≤ if((𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘𝐹))) |
| 15 | deg1suble.m | . . . . 5 ⊢ − = (-g‘𝑌) | |
| 16 | 4, 5, 11, 15 | grpsubval 18864 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
| 17 | 6, 10, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
| 18 | 17 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘(𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)))) |
| 19 | 1, 2, 3, 4, 11, 10 | deg1invg 26009 | . . . . 5 ⊢ (𝜑 → (𝐷‘((invg‘𝑌)‘𝐺)) = (𝐷‘𝐺)) |
| 20 | 19 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) = (𝐷‘((invg‘𝑌)‘𝐺))) |
| 21 | 20 | breq2d 5104 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐺) ↔ (𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)))) |
| 22 | 21, 20 | ifbieq1d 4501 | . 2 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) = if((𝐷‘𝐹) ≤ (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘((invg‘𝑌)‘𝐺)), (𝐷‘𝐹))) |
| 23 | 14, 18, 22 | 3brtr4d 5124 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ≤ cle 11150 Basecbs 17120 +gcplusg 17161 Grpcgrp 18812 invgcminusg 18813 -gcsg 18814 Ringcrg 20118 Poly1cpl1 22059 deg1cdg1 25957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-lmod 20765 df-lss 20835 df-cnfld 21262 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 df-mdeg 25958 df-deg1 25959 |
| This theorem is referenced by: deg1sublt 26013 ply1divmo 26039 aks6d1c6lem3 42145 |
| Copyright terms: Public domain | W3C validator |