MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmadd2 Structured version   Visualization version   GIF version

Theorem gsummptfidmadd2 19525
Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmadd.b 𝐵 = (Base‘𝐺)
gsummptfidmadd.p + = (+g𝐺)
gsummptfidmadd.g (𝜑𝐺 ∈ CMnd)
gsummptfidmadd.a (𝜑𝐴 ∈ Fin)
gsummptfidmadd.c ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptfidmadd.d ((𝜑𝑥𝐴) → 𝐷𝐵)
gsummptfidmadd.f 𝐹 = (𝑥𝐴𝐶)
gsummptfidmadd.h 𝐻 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummptfidmadd2 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥, +
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem gsummptfidmadd2
StepHypRef Expression
1 gsummptfidmadd.a . . . 4 (𝜑𝐴 ∈ Fin)
2 gsummptfidmadd.c . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 gsummptfidmadd.d . . . 4 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 gsummptfidmadd.f . . . . 5 𝐹 = (𝑥𝐴𝐶)
54a1i 11 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐶))
6 gsummptfidmadd.h . . . . 5 𝐻 = (𝑥𝐴𝐷)
76a1i 11 . . . 4 (𝜑𝐻 = (𝑥𝐴𝐷))
81, 2, 3, 5, 7offval2 7547 . . 3 (𝜑 → (𝐹f + 𝐻) = (𝑥𝐴 ↦ (𝐶 + 𝐷)))
98oveq2d 7287 . 2 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))))
10 gsummptfidmadd.b . . 3 𝐵 = (Base‘𝐺)
11 gsummptfidmadd.p . . 3 + = (+g𝐺)
12 gsummptfidmadd.g . . 3 (𝜑𝐺 ∈ CMnd)
1310, 11, 12, 1, 2, 3, 4, 6gsummptfidmadd 19524 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
149, 13eqtrd 2780 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cmpt 5162  cfv 6432  (class class class)co 7271  f cof 7525  Fincfn 8716  Basecbs 16910  +gcplusg 16960   Σg cgsu 17149  CMndccmn 19384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-0g 17150  df-gsum 17151  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-cntz 18921  df-cmn 19386
This theorem is referenced by:  psrdi  21173  psrdir  21174  mamudi  21548  mamudir  21549  mdetrlin  21749  lgseisenlem3  26523  lgseisenlem4  26524
  Copyright terms: Public domain W3C validator