Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptfsf1o Structured version   Visualization version   GIF version

Theorem gsummptfsf1o 33008
Description: Re-index a finite group sum using a bijection. A version of gsummptf1o 19842 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsummptfsf1o.x 𝑥𝐻
gsummptfsf1o.b 𝐵 = (Base‘𝐺)
gsummptfsf1o.z 0 = (0g𝐺)
gsummptfsf1o.i (𝑥 = 𝐸𝐶 = 𝐻)
gsummptfsf1o.g (𝜑𝐺 ∈ CMnd)
gsummptfsf1o.1 (𝜑𝐴𝑉)
gsummptfsf1o.a (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
gsummptfsf1o.d (𝜑𝐹𝐵)
gsummptfsf1o.f ((𝜑𝑥𝐴) → 𝐶𝐹)
gsummptfsf1o.e ((𝜑𝑦𝐷) → 𝐸𝐴)
gsummptfsf1o.h ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
Assertion
Ref Expression
gsummptfsf1o (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsummptfsf1o
StepHypRef Expression
1 gsummptfsf1o.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptfsf1o.z . . 3 0 = (0g𝐺)
3 gsummptfsf1o.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummptfsf1o.1 . . 3 (𝜑𝐴𝑉)
5 gsummptfsf1o.d . . . . . 6 (𝜑𝐹𝐵)
65adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹𝐵)
7 gsummptfsf1o.f . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐹)
86, 7sseldd 3936 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98fmpttd 7049 . . 3 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
10 gsummptfsf1o.a . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 gsummptfsf1o.e . . . . 5 ((𝜑𝑦𝐷) → 𝐸𝐴)
1211ralrimiva 3121 . . . 4 (𝜑 → ∀𝑦𝐷 𝐸𝐴)
13 gsummptfsf1o.h . . . . 5 ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
1413ralrimiva 3121 . . . 4 (𝜑 → ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸)
15 eqid 2729 . . . . 5 (𝑦𝐷𝐸) = (𝑦𝐷𝐸)
1615f1ompt 7045 . . . 4 ((𝑦𝐷𝐸):𝐷1-1-onto𝐴 ↔ (∀𝑦𝐷 𝐸𝐴 ∧ ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸))
1712, 14, 16sylanbrc 583 . . 3 (𝜑 → (𝑦𝐷𝐸):𝐷1-1-onto𝐴)
181, 2, 3, 4, 9, 10, 17gsumf1o 19795 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))))
19 eqidd 2730 . . . . 5 (𝜑 → (𝑦𝐷𝐸) = (𝑦𝐷𝐸))
20 eqidd 2730 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2112, 19, 20fmptcos 7065 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐸 / 𝑥𝐶))
22 nfv 1914 . . . . . 6 𝑥(𝜑𝑦𝐷)
23 gsummptfsf1o.x . . . . . . 7 𝑥𝐻
2423a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 𝑥𝐻)
25 gsummptfsf1o.i . . . . . . 7 (𝑥 = 𝐸𝐶 = 𝐻)
2625adantl 481 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻)
2722, 24, 11, 26csbiedf 3881 . . . . 5 ((𝜑𝑦𝐷) → 𝐸 / 𝑥𝐶 = 𝐻)
2827mpteq2dva 5185 . . . 4 (𝜑 → (𝑦𝐷𝐸 / 𝑥𝐶) = (𝑦𝐷𝐻))
2921, 28eqtrd 2764 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐻))
3029oveq2d 7365 . 2 (𝜑 → (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))) = (𝐺 Σg (𝑦𝐷𝐻)))
3118, 30eqtrd 2764 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  ∃!wreu 3341  csb 3851  wss 3903   class class class wbr 5092  cmpt 5173  ccom 5623  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349   finSupp cfsupp 9251  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  CMndccmn 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-cntz 19196  df-cmn 19661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator