Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptfsf1o Structured version   Visualization version   GIF version

Theorem gsummptfsf1o 33057
Description: Re-index a finite group sum using a bijection. A version of gsummptf1o 19981 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsummptfsf1o.x 𝑥𝐻
gsummptfsf1o.b 𝐵 = (Base‘𝐺)
gsummptfsf1o.z 0 = (0g𝐺)
gsummptfsf1o.i (𝑥 = 𝐸𝐶 = 𝐻)
gsummptfsf1o.g (𝜑𝐺 ∈ CMnd)
gsummptfsf1o.1 (𝜑𝐴𝑉)
gsummptfsf1o.a (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
gsummptfsf1o.d (𝜑𝐹𝐵)
gsummptfsf1o.f ((𝜑𝑥𝐴) → 𝐶𝐹)
gsummptfsf1o.e ((𝜑𝑦𝐷) → 𝐸𝐴)
gsummptfsf1o.h ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
Assertion
Ref Expression
gsummptfsf1o (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsummptfsf1o
StepHypRef Expression
1 gsummptfsf1o.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptfsf1o.z . . 3 0 = (0g𝐺)
3 gsummptfsf1o.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummptfsf1o.1 . . 3 (𝜑𝐴𝑉)
5 gsummptfsf1o.d . . . . . 6 (𝜑𝐹𝐵)
65adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹𝐵)
7 gsummptfsf1o.f . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐹)
86, 7sseldd 3984 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98fmpttd 7135 . . 3 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
10 gsummptfsf1o.a . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 gsummptfsf1o.e . . . . 5 ((𝜑𝑦𝐷) → 𝐸𝐴)
1211ralrimiva 3146 . . . 4 (𝜑 → ∀𝑦𝐷 𝐸𝐴)
13 gsummptfsf1o.h . . . . 5 ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
1413ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸)
15 eqid 2737 . . . . 5 (𝑦𝐷𝐸) = (𝑦𝐷𝐸)
1615f1ompt 7131 . . . 4 ((𝑦𝐷𝐸):𝐷1-1-onto𝐴 ↔ (∀𝑦𝐷 𝐸𝐴 ∧ ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸))
1712, 14, 16sylanbrc 583 . . 3 (𝜑 → (𝑦𝐷𝐸):𝐷1-1-onto𝐴)
181, 2, 3, 4, 9, 10, 17gsumf1o 19934 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))))
19 eqidd 2738 . . . . 5 (𝜑 → (𝑦𝐷𝐸) = (𝑦𝐷𝐸))
20 eqidd 2738 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2112, 19, 20fmptcos 7151 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐸 / 𝑥𝐶))
22 nfv 1914 . . . . . 6 𝑥(𝜑𝑦𝐷)
23 gsummptfsf1o.x . . . . . . 7 𝑥𝐻
2423a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 𝑥𝐻)
25 gsummptfsf1o.i . . . . . . 7 (𝑥 = 𝐸𝐶 = 𝐻)
2625adantl 481 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻)
2722, 24, 11, 26csbiedf 3929 . . . . 5 ((𝜑𝑦𝐷) → 𝐸 / 𝑥𝐶 = 𝐻)
2827mpteq2dva 5242 . . . 4 (𝜑 → (𝑦𝐷𝐸 / 𝑥𝐶) = (𝑦𝐷𝐻))
2921, 28eqtrd 2777 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐻))
3029oveq2d 7447 . 2 (𝜑 → (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))) = (𝐺 Σg (𝑦𝐷𝐻)))
3118, 30eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wnfc 2890  wral 3061  ∃!wreu 3378  csb 3899  wss 3951   class class class wbr 5143  cmpt 5225  ccom 5689  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431   finSupp cfsupp 9401  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-cntz 19335  df-cmn 19800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator