Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptfsf1o Structured version   Visualization version   GIF version

Theorem gsummptfsf1o 32994
Description: Re-index a finite group sum using a bijection. A version of gsummptf1o 19942 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsummptfsf1o.x 𝑥𝐻
gsummptfsf1o.b 𝐵 = (Base‘𝐺)
gsummptfsf1o.z 0 = (0g𝐺)
gsummptfsf1o.i (𝑥 = 𝐸𝐶 = 𝐻)
gsummptfsf1o.g (𝜑𝐺 ∈ CMnd)
gsummptfsf1o.1 (𝜑𝐴𝑉)
gsummptfsf1o.a (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
gsummptfsf1o.d (𝜑𝐹𝐵)
gsummptfsf1o.f ((𝜑𝑥𝐴) → 𝐶𝐹)
gsummptfsf1o.e ((𝜑𝑦𝐷) → 𝐸𝐴)
gsummptfsf1o.h ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
Assertion
Ref Expression
gsummptfsf1o (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsummptfsf1o
StepHypRef Expression
1 gsummptfsf1o.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptfsf1o.z . . 3 0 = (0g𝐺)
3 gsummptfsf1o.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummptfsf1o.1 . . 3 (𝜑𝐴𝑉)
5 gsummptfsf1o.d . . . . . 6 (𝜑𝐹𝐵)
65adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹𝐵)
7 gsummptfsf1o.f . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐹)
86, 7sseldd 3959 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98fmpttd 7104 . . 3 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
10 gsummptfsf1o.a . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 gsummptfsf1o.e . . . . 5 ((𝜑𝑦𝐷) → 𝐸𝐴)
1211ralrimiva 3132 . . . 4 (𝜑 → ∀𝑦𝐷 𝐸𝐴)
13 gsummptfsf1o.h . . . . 5 ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
1413ralrimiva 3132 . . . 4 (𝜑 → ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸)
15 eqid 2735 . . . . 5 (𝑦𝐷𝐸) = (𝑦𝐷𝐸)
1615f1ompt 7100 . . . 4 ((𝑦𝐷𝐸):𝐷1-1-onto𝐴 ↔ (∀𝑦𝐷 𝐸𝐴 ∧ ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸))
1712, 14, 16sylanbrc 583 . . 3 (𝜑 → (𝑦𝐷𝐸):𝐷1-1-onto𝐴)
181, 2, 3, 4, 9, 10, 17gsumf1o 19895 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))))
19 eqidd 2736 . . . . 5 (𝜑 → (𝑦𝐷𝐸) = (𝑦𝐷𝐸))
20 eqidd 2736 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2112, 19, 20fmptcos 7120 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐸 / 𝑥𝐶))
22 nfv 1914 . . . . . 6 𝑥(𝜑𝑦𝐷)
23 gsummptfsf1o.x . . . . . . 7 𝑥𝐻
2423a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 𝑥𝐻)
25 gsummptfsf1o.i . . . . . . 7 (𝑥 = 𝐸𝐶 = 𝐻)
2625adantl 481 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻)
2722, 24, 11, 26csbiedf 3904 . . . . 5 ((𝜑𝑦𝐷) → 𝐸 / 𝑥𝐶 = 𝐻)
2827mpteq2dva 5214 . . . 4 (𝜑 → (𝑦𝐷𝐸 / 𝑥𝐶) = (𝑦𝐷𝐻))
2921, 28eqtrd 2770 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐻))
3029oveq2d 7419 . 2 (𝜑 → (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))) = (𝐺 Σg (𝑦𝐷𝐻)))
3118, 30eqtrd 2770 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wnfc 2883  wral 3051  ∃!wreu 3357  csb 3874  wss 3926   class class class wbr 5119  cmpt 5201  ccom 5658  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403   finSupp cfsupp 9371  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-0g 17453  df-gsum 17454  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-cntz 19298  df-cmn 19761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator