Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumfs2d Structured version   Visualization version   GIF version

Theorem gsumfs2d 32995
Description: Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19951 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumfs2d.p 𝑥𝜑
gsumfs2d.b 𝐵 = (Base‘𝑊)
gsumfs2d.1 0 = (0g𝑊)
gsumfs2d.r (𝜑 → Rel 𝐴)
gsumfs2d.2 (𝜑𝐹 finSupp 0 )
gsumfs2d.w (𝜑𝑊 ∈ CMnd)
gsumfs2d.3 (𝜑𝐹:𝐴𝐵)
gsumfs2d.a (𝜑𝐴𝑋)
Assertion
Ref Expression
gsumfs2d (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem gsumfs2d
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfs2d.b . . . . 5 𝐵 = (Base‘𝑊)
2 gsumfs2d.1 . . . . 5 0 = (0g𝑊)
3 gsumfs2d.w . . . . . 6 (𝜑𝑊 ∈ CMnd)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝑊 ∈ CMnd)
5 gsumfs2d.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝐴𝑋)
76imaexd 7910 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐴 “ {𝑥}) ∈ V)
8 gsumfs2d.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
98ffnd 6706 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
109ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐹 Fn 𝐴)
115ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐴𝑋)
122fvexi 6889 . . . . . . 7 0 ∈ V
1312a1i 11 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 0 ∈ V)
14 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥})))
1514eldifad 3938 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ (𝐴 “ {𝑥}))
16 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
17 vex 3463 . . . . . . . . . 10 𝑦 ∈ V
1816, 17elimasn 6077 . . . . . . . . 9 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1918biimpi 216 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2015, 19syl 17 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2114eldifbd 3939 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2216, 17elimasn 6077 . . . . . . . . 9 (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2322biimpri 228 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2421, 23nsyl 140 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2520, 24eldifd 3937 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
2610, 11, 13, 25fvdifsupp 8168 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
27 gsumfs2d.2 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
2827fsuppimpd 9379 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ∈ Fin)
30 imafi2 32635 . . . . . 6 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
3129, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
328ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
3319adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3432, 33ffvelcdmd 7074 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
35 suppssdm 8174 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3635, 8fssdm 6724 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3736adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ⊆ 𝐴)
38 imass1 6088 . . . . . 6 ((𝐹 supp 0 ) ⊆ 𝐴 → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
3937, 38syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
401, 2, 4, 7, 26, 31, 34, 39gsummptres2 32993 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4140mpteq2dva 5214 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))) = (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))))
4241oveq2d 7419 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
435dmexd 7897 . . 3 (𝜑 → dom 𝐴 ∈ V)
449ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹 Fn 𝐴)
455ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐴𝑋)
4612a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 0 ∈ V)
4719adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 )))
4948eldifbd 3939 . . . . . . . . 9 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ 𝑥 ∈ dom (𝐹 supp 0 ))
5016, 17opeldm 5887 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑥 ∈ dom (𝐹 supp 0 ))
5149, 50nsyl 140 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
5247, 51eldifd 3937 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
5344, 45, 46, 52fvdifsupp 8168 . . . . . 6 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
5453mpteq2dva 5214 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 ))
5554oveq2d 7419 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )))
563cmnmndd 19783 . . . . 5 (𝜑𝑊 ∈ Mnd)
575adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → 𝐴𝑋)
5857imaexd 7910 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝐴 “ {𝑥}) ∈ V)
592gsumz 18812 . . . . 5 ((𝑊 ∈ Mnd ∧ (𝐴 “ {𝑥}) ∈ V) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6056, 58, 59syl2an2r 685 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6155, 60eqtrd 2770 . . 3 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = 0 )
62 dmfi 9345 . . . 4 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6328, 62syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
643adantr 480 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
655adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 𝐴𝑋)
6665imaexd 7910 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝐴 “ {𝑥}) ∈ V)
678ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
6819adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6967, 68ffvelcdmd 7074 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
7069fmpttd 7104 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)):(𝐴 “ {𝑥})⟶𝐵)
7166mptexd 7215 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ V)
7270ffnd 6706 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) Fn (𝐴 “ {𝑥}))
7312a1i 11 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 0 ∈ V)
7428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐴) → (𝐹 supp 0 ) ∈ Fin)
7574, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
76 eqid 2735 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))
77 simp-4l 782 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝜑)
78 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑥 ∈ dom 𝐴)
79 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 = 𝑡)
80 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑡 ∈ (𝐴 “ {𝑥}))
8179, 80eqeltrd 2834 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 ∈ (𝐴 “ {𝑥}))
82 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}))
8379, 82eqneltrd 2854 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
849ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐹 Fn 𝐴)
855ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐴𝑋)
8612a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
8768adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
8823con3i 154 . . . . . . . . . . . 12 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
8988adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
9087, 89eldifd 3937 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
9184, 85, 86, 90fvdifsupp 8168 . . . . . . . . 9 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
9277, 78, 81, 83, 91syl1111anc 840 . . . . . . . 8 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
93 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝑡 ∈ (𝐴 “ {𝑥}))
9412a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
9576, 92, 93, 94fvmptd2 6993 . . . . . . 7 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 )
9695ex 412 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9796orrd 863 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) ∨ ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9871, 72, 73, 75, 97finnzfsuppd 9383 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) finSupp 0 )
991, 2, 64, 66, 70, 98gsumcl 19894 . . 3 ((𝜑𝑥 ∈ dom 𝐴) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) ∈ 𝐵)
100 dmss 5882 . . . 4 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
10136, 100syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
1021, 2, 3, 43, 61, 63, 99, 101gsummptres2 32993 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
1038, 36feqresmpt 6947 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧)))
104103oveq2d 7419 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))))
105 ssidd 3982 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
1061, 2, 3, 5, 8, 105, 27gsumres 19892 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg 𝐹))
107 nfcv 2898 . . . 4 𝑦(𝐹𝑧)
108 gsumfs2d.p . . . 4 𝑥𝜑
109 fveq2 6875 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
110 gsumfs2d.r . . . . 5 (𝜑 → Rel 𝐴)
111 relss 5760 . . . . 5 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
11236, 110, 111sylc 65 . . . 4 (𝜑 → Rel (𝐹 supp 0 ))
1138adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
11436sselda 3958 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝑧𝐴)
115113, 114ffvelcdmd 7074 . . . 4 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → (𝐹𝑧) ∈ 𝐵)
116107, 108, 1, 109, 112, 28, 3, 115gsummpt2d 32989 . . 3 (𝜑 → (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
117104, 106, 1163eqtr3d 2778 . 2 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
11842, 102, 1173eqtr4rd 2781 1 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  Vcvv 3459  cdif 3923  wss 3926  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  cima 5657  Rel wrel 5659   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157  Fincfn 8957   finSupp cfsupp 9371  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761
This theorem is referenced by:  gsumwrd2dccat  33007
  Copyright terms: Public domain W3C validator