Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumfs2d Structured version   Visualization version   GIF version

Theorem gsumfs2d 33038
Description: Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19886 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumfs2d.p 𝑥𝜑
gsumfs2d.b 𝐵 = (Base‘𝑊)
gsumfs2d.1 0 = (0g𝑊)
gsumfs2d.r (𝜑 → Rel 𝐴)
gsumfs2d.2 (𝜑𝐹 finSupp 0 )
gsumfs2d.w (𝜑𝑊 ∈ CMnd)
gsumfs2d.3 (𝜑𝐹:𝐴𝐵)
gsumfs2d.a (𝜑𝐴𝑋)
Assertion
Ref Expression
gsumfs2d (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem gsumfs2d
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfs2d.b . . . . 5 𝐵 = (Base‘𝑊)
2 gsumfs2d.1 . . . . 5 0 = (0g𝑊)
3 gsumfs2d.w . . . . . 6 (𝜑𝑊 ∈ CMnd)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝑊 ∈ CMnd)
5 gsumfs2d.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝐴𝑋)
76imaexd 7872 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐴 “ {𝑥}) ∈ V)
8 gsumfs2d.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
98ffnd 6671 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
109ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐹 Fn 𝐴)
115ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐴𝑋)
122fvexi 6854 . . . . . . 7 0 ∈ V
1312a1i 11 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 0 ∈ V)
14 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥})))
1514eldifad 3923 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ (𝐴 “ {𝑥}))
16 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
17 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
1816, 17elimasn 6050 . . . . . . . . 9 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1918biimpi 216 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2015, 19syl 17 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2114eldifbd 3924 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2216, 17elimasn 6050 . . . . . . . . 9 (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2322biimpri 228 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2421, 23nsyl 140 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2520, 24eldifd 3922 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
2610, 11, 13, 25fvdifsupp 8127 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
27 gsumfs2d.2 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
2827fsuppimpd 9296 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ∈ Fin)
30 imafi2 32685 . . . . . 6 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
3129, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
328ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
3319adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3432, 33ffvelcdmd 7039 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
35 suppssdm 8133 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3635, 8fssdm 6689 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3736adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ⊆ 𝐴)
38 imass1 6061 . . . . . 6 ((𝐹 supp 0 ) ⊆ 𝐴 → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
3937, 38syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
401, 2, 4, 7, 26, 31, 34, 39gsummptres2 33036 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4140mpteq2dva 5195 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))) = (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))))
4241oveq2d 7385 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
435dmexd 7859 . . 3 (𝜑 → dom 𝐴 ∈ V)
449ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹 Fn 𝐴)
455ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐴𝑋)
4612a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 0 ∈ V)
4719adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 )))
4948eldifbd 3924 . . . . . . . . 9 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ 𝑥 ∈ dom (𝐹 supp 0 ))
5016, 17opeldm 5861 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑥 ∈ dom (𝐹 supp 0 ))
5149, 50nsyl 140 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
5247, 51eldifd 3922 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
5344, 45, 46, 52fvdifsupp 8127 . . . . . 6 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
5453mpteq2dva 5195 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 ))
5554oveq2d 7385 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )))
563cmnmndd 19718 . . . . 5 (𝜑𝑊 ∈ Mnd)
575adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → 𝐴𝑋)
5857imaexd 7872 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝐴 “ {𝑥}) ∈ V)
592gsumz 18745 . . . . 5 ((𝑊 ∈ Mnd ∧ (𝐴 “ {𝑥}) ∈ V) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6056, 58, 59syl2an2r 685 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6155, 60eqtrd 2764 . . 3 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = 0 )
62 dmfi 9262 . . . 4 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6328, 62syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
643adantr 480 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
655adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 𝐴𝑋)
6665imaexd 7872 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝐴 “ {𝑥}) ∈ V)
678ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
6819adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6967, 68ffvelcdmd 7039 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
7069fmpttd 7069 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)):(𝐴 “ {𝑥})⟶𝐵)
7166mptexd 7180 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ V)
7270ffnd 6671 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) Fn (𝐴 “ {𝑥}))
7312a1i 11 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 0 ∈ V)
7428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐴) → (𝐹 supp 0 ) ∈ Fin)
7574, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
76 eqid 2729 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))
77 simp-4l 782 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝜑)
78 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑥 ∈ dom 𝐴)
79 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 = 𝑡)
80 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑡 ∈ (𝐴 “ {𝑥}))
8179, 80eqeltrd 2828 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 ∈ (𝐴 “ {𝑥}))
82 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}))
8379, 82eqneltrd 2848 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
849ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐹 Fn 𝐴)
855ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐴𝑋)
8612a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
8768adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
8823con3i 154 . . . . . . . . . . . 12 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
8988adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
9087, 89eldifd 3922 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
9184, 85, 86, 90fvdifsupp 8127 . . . . . . . . 9 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
9277, 78, 81, 83, 91syl1111anc 840 . . . . . . . 8 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
93 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝑡 ∈ (𝐴 “ {𝑥}))
9412a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
9576, 92, 93, 94fvmptd2 6958 . . . . . . 7 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 )
9695ex 412 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9796orrd 863 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) ∨ ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9871, 72, 73, 75, 97finnzfsuppd 9300 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) finSupp 0 )
991, 2, 64, 66, 70, 98gsumcl 19829 . . 3 ((𝜑𝑥 ∈ dom 𝐴) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) ∈ 𝐵)
100 dmss 5856 . . . 4 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
10136, 100syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
1021, 2, 3, 43, 61, 63, 99, 101gsummptres2 33036 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
1038, 36feqresmpt 6912 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧)))
104103oveq2d 7385 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))))
105 ssidd 3967 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
1061, 2, 3, 5, 8, 105, 27gsumres 19827 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg 𝐹))
107 nfcv 2891 . . . 4 𝑦(𝐹𝑧)
108 gsumfs2d.p . . . 4 𝑥𝜑
109 fveq2 6840 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
110 gsumfs2d.r . . . . 5 (𝜑 → Rel 𝐴)
111 relss 5736 . . . . 5 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
11236, 110, 111sylc 65 . . . 4 (𝜑 → Rel (𝐹 supp 0 ))
1138adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
11436sselda 3943 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝑧𝐴)
115113, 114ffvelcdmd 7039 . . . 4 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → (𝐹𝑧) ∈ 𝐵)
116107, 108, 1, 109, 112, 28, 3, 115gsummpt2d 33032 . . 3 (𝜑 → (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
117104, 106, 1163eqtr3d 2772 . 2 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
11842, 102, 1173eqtr4rd 2775 1 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  cima 5634  Rel wrel 5636   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116  Fincfn 8895   finSupp cfsupp 9288  Basecbs 17155  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18643  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696
This theorem is referenced by:  gsumwrd2dccat  33050
  Copyright terms: Public domain W3C validator