Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumfs2d Structured version   Visualization version   GIF version

Theorem gsumfs2d 33035
Description: Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19884 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumfs2d.p 𝑥𝜑
gsumfs2d.b 𝐵 = (Base‘𝑊)
gsumfs2d.1 0 = (0g𝑊)
gsumfs2d.r (𝜑 → Rel 𝐴)
gsumfs2d.2 (𝜑𝐹 finSupp 0 )
gsumfs2d.w (𝜑𝑊 ∈ CMnd)
gsumfs2d.3 (𝜑𝐹:𝐴𝐵)
gsumfs2d.a (𝜑𝐴𝑋)
Assertion
Ref Expression
gsumfs2d (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem gsumfs2d
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfs2d.b . . . . 5 𝐵 = (Base‘𝑊)
2 gsumfs2d.1 . . . . 5 0 = (0g𝑊)
3 gsumfs2d.w . . . . . 6 (𝜑𝑊 ∈ CMnd)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝑊 ∈ CMnd)
5 gsumfs2d.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝐴𝑋)
76imaexd 7846 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐴 “ {𝑥}) ∈ V)
8 gsumfs2d.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
98ffnd 6652 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
109ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐹 Fn 𝐴)
115ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐴𝑋)
122fvexi 6836 . . . . . . 7 0 ∈ V
1312a1i 11 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 0 ∈ V)
14 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥})))
1514eldifad 3909 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ (𝐴 “ {𝑥}))
16 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
17 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
1816, 17elimasn 6038 . . . . . . . . 9 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1918biimpi 216 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2015, 19syl 17 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2114eldifbd 3910 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2216, 17elimasn 6038 . . . . . . . . 9 (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2322biimpri 228 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2421, 23nsyl 140 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2520, 24eldifd 3908 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
2610, 11, 13, 25fvdifsupp 8101 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
27 gsumfs2d.2 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
2827fsuppimpd 9253 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ∈ Fin)
30 imafi2 32693 . . . . . 6 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
3129, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
328ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
3319adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3432, 33ffvelcdmd 7018 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
35 suppssdm 8107 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3635, 8fssdm 6670 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3736adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ⊆ 𝐴)
38 imass1 6049 . . . . . 6 ((𝐹 supp 0 ) ⊆ 𝐴 → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
3937, 38syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
401, 2, 4, 7, 26, 31, 34, 39gsummptres2 33033 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4140mpteq2dva 5182 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))) = (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))))
4241oveq2d 7362 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
435dmexd 7833 . . 3 (𝜑 → dom 𝐴 ∈ V)
449ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹 Fn 𝐴)
455ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐴𝑋)
4612a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 0 ∈ V)
4719adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 )))
4948eldifbd 3910 . . . . . . . . 9 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ 𝑥 ∈ dom (𝐹 supp 0 ))
5016, 17opeldm 5846 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑥 ∈ dom (𝐹 supp 0 ))
5149, 50nsyl 140 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
5247, 51eldifd 3908 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
5344, 45, 46, 52fvdifsupp 8101 . . . . . 6 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
5453mpteq2dva 5182 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 ))
5554oveq2d 7362 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )))
563cmnmndd 19716 . . . . 5 (𝜑𝑊 ∈ Mnd)
575adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → 𝐴𝑋)
5857imaexd 7846 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝐴 “ {𝑥}) ∈ V)
592gsumz 18744 . . . . 5 ((𝑊 ∈ Mnd ∧ (𝐴 “ {𝑥}) ∈ V) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6056, 58, 59syl2an2r 685 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6155, 60eqtrd 2766 . . 3 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = 0 )
62 dmfi 9219 . . . 4 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6328, 62syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
643adantr 480 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
655adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 𝐴𝑋)
6665imaexd 7846 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝐴 “ {𝑥}) ∈ V)
678ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
6819adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6967, 68ffvelcdmd 7018 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
7069fmpttd 7048 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)):(𝐴 “ {𝑥})⟶𝐵)
7166mptexd 7158 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ V)
7270ffnd 6652 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) Fn (𝐴 “ {𝑥}))
7312a1i 11 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 0 ∈ V)
7428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐴) → (𝐹 supp 0 ) ∈ Fin)
7574, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
76 eqid 2731 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))
77 simp-4l 782 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝜑)
78 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑥 ∈ dom 𝐴)
79 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 = 𝑡)
80 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑡 ∈ (𝐴 “ {𝑥}))
8179, 80eqeltrd 2831 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 ∈ (𝐴 “ {𝑥}))
82 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}))
8379, 82eqneltrd 2851 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
849ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐹 Fn 𝐴)
855ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐴𝑋)
8612a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
8768adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
8823con3i 154 . . . . . . . . . . . 12 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
8988adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
9087, 89eldifd 3908 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
9184, 85, 86, 90fvdifsupp 8101 . . . . . . . . 9 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
9277, 78, 81, 83, 91syl1111anc 840 . . . . . . . 8 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
93 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝑡 ∈ (𝐴 “ {𝑥}))
9412a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
9576, 92, 93, 94fvmptd2 6937 . . . . . . 7 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 )
9695ex 412 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9796orrd 863 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) ∨ ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9871, 72, 73, 75, 97finnzfsuppd 9257 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) finSupp 0 )
991, 2, 64, 66, 70, 98gsumcl 19827 . . 3 ((𝜑𝑥 ∈ dom 𝐴) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) ∈ 𝐵)
100 dmss 5841 . . . 4 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
10136, 100syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
1021, 2, 3, 43, 61, 63, 99, 101gsummptres2 33033 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
1038, 36feqresmpt 6891 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧)))
104103oveq2d 7362 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))))
105 ssidd 3953 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
1061, 2, 3, 5, 8, 105, 27gsumres 19825 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg 𝐹))
107 nfcv 2894 . . . 4 𝑦(𝐹𝑧)
108 gsumfs2d.p . . . 4 𝑥𝜑
109 fveq2 6822 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
110 gsumfs2d.r . . . . 5 (𝜑 → Rel 𝐴)
111 relss 5721 . . . . 5 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
11236, 110, 111sylc 65 . . . 4 (𝜑 → Rel (𝐹 supp 0 ))
1138adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
11436sselda 3929 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝑧𝐴)
115113, 114ffvelcdmd 7018 . . . 4 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → (𝐹𝑧) ∈ 𝐵)
116107, 108, 1, 109, 112, 28, 3, 115gsummpt2d 33029 . . 3 (𝜑 → (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
117104, 106, 1163eqtr3d 2774 . 2 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
11842, 102, 1173eqtr4rd 2777 1 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  cima 5617  Rel wrel 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694
This theorem is referenced by:  gsumwrd2dccat  33047
  Copyright terms: Public domain W3C validator