Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumfs2d Structured version   Visualization version   GIF version

Theorem gsumfs2d 33040
Description: Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 20004 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumfs2d.p 𝑥𝜑
gsumfs2d.b 𝐵 = (Base‘𝑊)
gsumfs2d.1 0 = (0g𝑊)
gsumfs2d.r (𝜑 → Rel 𝐴)
gsumfs2d.2 (𝜑𝐹 finSupp 0 )
gsumfs2d.w (𝜑𝑊 ∈ CMnd)
gsumfs2d.3 (𝜑𝐹:𝐴𝐵)
gsumfs2d.a (𝜑𝐴𝑋)
Assertion
Ref Expression
gsumfs2d (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem gsumfs2d
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfs2d.b . . . . 5 𝐵 = (Base‘𝑊)
2 gsumfs2d.1 . . . . 5 0 = (0g𝑊)
3 gsumfs2d.w . . . . . 6 (𝜑𝑊 ∈ CMnd)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝑊 ∈ CMnd)
5 gsumfs2d.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → 𝐴𝑋)
76imaexd 7938 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐴 “ {𝑥}) ∈ V)
8 gsumfs2d.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
98ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
109ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐹 Fn 𝐴)
115ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝐴𝑋)
122fvexi 6920 . . . . . . 7 0 ∈ V
1312a1i 11 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 0 ∈ V)
14 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥})))
1514eldifad 3974 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → 𝑦 ∈ (𝐴 “ {𝑥}))
16 vex 3481 . . . . . . . . . 10 𝑥 ∈ V
17 vex 3481 . . . . . . . . . 10 𝑦 ∈ V
1816, 17elimasn 6109 . . . . . . . . 9 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1918biimpi 216 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2015, 19syl 17 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2114eldifbd 3975 . . . . . . . 8 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2216, 17elimasn 6109 . . . . . . . . 9 (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2322biimpri 228 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
2421, 23nsyl 140 . . . . . . 7 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
2520, 24eldifd 3973 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
2610, 11, 13, 25fvdifsupp 8194 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ ((𝐴 “ {𝑥}) ∖ ((𝐹 supp 0 ) “ {𝑥}))) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
27 gsumfs2d.2 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
2827fsuppimpd 9406 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ∈ Fin)
30 imafi2 32728 . . . . . 6 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
3129, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
328ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
3319adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3432, 33ffvelcdmd 7104 . . . . 5 (((𝜑𝑥 ∈ dom (𝐹 supp 0 )) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
35 suppssdm 8200 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3635, 8fssdm 6755 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3736adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝐹 supp 0 ) ⊆ 𝐴)
38 imass1 6121 . . . . . 6 ((𝐹 supp 0 ) ⊆ 𝐴 → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
3937, 38syl 17 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → ((𝐹 supp 0 ) “ {𝑥}) ⊆ (𝐴 “ {𝑥}))
401, 2, 4, 7, 26, 31, 34, 39gsummptres2 33038 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 supp 0 )) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4140mpteq2dva 5247 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))) = (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)))))
4241oveq2d 7446 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
435dmexd 7925 . . 3 (𝜑 → dom 𝐴 ∈ V)
449ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹 Fn 𝐴)
455ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐴𝑋)
4612a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 0 ∈ V)
4719adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
48 simplr 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 )))
4948eldifbd 3975 . . . . . . . . 9 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ 𝑥 ∈ dom (𝐹 supp 0 ))
5016, 17opeldm 5920 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ) → 𝑥 ∈ dom (𝐹 supp 0 ))
5149, 50nsyl 140 . . . . . . . 8 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
5247, 51eldifd 3973 . . . . . . 7 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
5344, 45, 46, 52fvdifsupp 8194 . . . . . 6 (((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
5453mpteq2dva 5247 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 ))
5554oveq2d 7446 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )))
563cmnmndd 19836 . . . . 5 (𝜑𝑊 ∈ Mnd)
575adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → 𝐴𝑋)
5857imaexd 7938 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝐴 “ {𝑥}) ∈ V)
592gsumz 18861 . . . . 5 ((𝑊 ∈ Mnd ∧ (𝐴 “ {𝑥}) ∈ V) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6056, 58, 59syl2an2r 685 . . . 4 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ 0 )) = 0 )
6155, 60eqtrd 2774 . . 3 ((𝜑𝑥 ∈ (dom 𝐴 ∖ dom (𝐹 supp 0 ))) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = 0 )
62 dmfi 9372 . . . 4 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6328, 62syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
643adantr 480 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
655adantr 480 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 𝐴𝑋)
6665imaexd 7938 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝐴 “ {𝑥}) ∈ V)
678ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → 𝐹:𝐴𝐵)
6819adantl 481 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6967, 68ffvelcdmd 7104 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐵)
7069fmpttd 7134 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)):(𝐴 “ {𝑥})⟶𝐵)
7166mptexd 7243 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ V)
7270ffnd 6737 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) Fn (𝐴 “ {𝑥}))
7312a1i 11 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → 0 ∈ V)
7428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐴) → (𝐹 supp 0 ) ∈ Fin)
7574, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ dom 𝐴) → ((𝐹 supp 0 ) “ {𝑥}) ∈ Fin)
76 eqid 2734 . . . . . . . 8 (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))
77 simp-4l 783 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝜑)
78 simp-4r 784 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑥 ∈ dom 𝐴)
79 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 = 𝑡)
80 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑡 ∈ (𝐴 “ {𝑥}))
8179, 80eqeltrd 2838 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → 𝑦 ∈ (𝐴 “ {𝑥}))
82 simplr 769 . . . . . . . . . 10 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}))
8379, 82eqneltrd 2858 . . . . . . . . 9 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}))
849ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐹 Fn 𝐴)
855ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝐴𝑋)
8612a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
8768adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
8823con3i 154 . . . . . . . . . . . 12 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
8988adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐹 supp 0 ))
9087, 89eldifd 3973 . . . . . . . . . 10 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
9184, 85, 86, 90fvdifsupp 8194 . . . . . . . . 9 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑦 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥})) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
9277, 78, 81, 83, 91syl1111anc 840 . . . . . . . 8 (((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) ∧ 𝑦 = 𝑡) → (𝐹‘⟨𝑥, 𝑦⟩) = 0 )
93 simplr 769 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 𝑡 ∈ (𝐴 “ {𝑥}))
9412a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → 0 ∈ V)
9576, 92, 93, 94fvmptd2 7023 . . . . . . 7 ((((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) ∧ ¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥})) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 )
9695ex 412 . . . . . 6 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (¬ 𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) → ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9796orrd 863 . . . . 5 (((𝜑𝑥 ∈ dom 𝐴) ∧ 𝑡 ∈ (𝐴 “ {𝑥})) → (𝑡 ∈ ((𝐹 supp 0 ) “ {𝑥}) ∨ ((𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))‘𝑡) = 0 ))
9871, 72, 73, 75, 97finnzfsuppd 9410 . . . 4 ((𝜑𝑥 ∈ dom 𝐴) → (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩)) finSupp 0 )
991, 2, 64, 66, 70, 98gsumcl 19947 . . 3 ((𝜑𝑥 ∈ dom 𝐴) → (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))) ∈ 𝐵)
100 dmss 5915 . . . 4 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
10136, 100syl 17 . . 3 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
1021, 2, 3, 43, 61, 63, 99, 101gsummptres2 33038 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
1038, 36feqresmpt 6977 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧)))
104103oveq2d 7446 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))))
105 ssidd 4018 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
1061, 2, 3, 5, 8, 105, 27gsumres 19945 . . 3 (𝜑 → (𝑊 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝑊 Σg 𝐹))
107 nfcv 2902 . . . 4 𝑦(𝐹𝑧)
108 gsumfs2d.p . . . 4 𝑥𝜑
109 fveq2 6906 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
110 gsumfs2d.r . . . . 5 (𝜑 → Rel 𝐴)
111 relss 5793 . . . . 5 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
11236, 110, 111sylc 65 . . . 4 (𝜑 → Rel (𝐹 supp 0 ))
1138adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
11436sselda 3994 . . . . 5 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → 𝑧𝐴)
115113, 114ffvelcdmd 7104 . . . 4 ((𝜑𝑧 ∈ (𝐹 supp 0 )) → (𝐹𝑧) ∈ 𝐵)
116107, 108, 1, 109, 112, 28, 3, 115gsummpt2d 33034 . . 3 (𝜑 → (𝑊 Σg (𝑧 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑧))) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
117104, 106, 1163eqtr3d 2782 . 2 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom (𝐹 supp 0 ) ↦ (𝑊 Σg (𝑦 ∈ ((𝐹 supp 0 ) “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
11842, 102, 1173eqtr4rd 2785 1 (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wnf 1779  wcel 2105  Vcvv 3477  cdif 3959  wss 3962  {csn 4630  cop 4636   class class class wbr 5147  cmpt 5230  dom cdm 5688  cres 5690  cima 5691  Rel wrel 5693   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183  Fincfn 8983   finSupp cfsupp 9398  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  gsumwrd2dccat  33052
  Copyright terms: Public domain W3C validator