| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash3tpexb | Structured version Visualization version GIF version | ||
| Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hash3tpexb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpde 14532 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| 3 | fveq2 6906 | . . . . . 6 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (♯‘𝑉) = (♯‘{𝑎, 𝑏, 𝑐})) | |
| 4 | df-tp 4631 | . . . . . . . . 9 ⊢ {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐}) | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐})) |
| 6 | 5 | fveq2d 6910 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = (♯‘({𝑎, 𝑏} ∪ {𝑐}))) |
| 7 | prfi 9363 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ Fin | |
| 8 | snfi 9083 | . . . . . . . 8 ⊢ {𝑐} ∈ Fin | |
| 9 | disjprsn 4714 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) | |
| 10 | 9 | 3adant1 1131 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) |
| 11 | hashun 14421 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ Fin ∧ {𝑐} ∈ Fin ∧ ({𝑎, 𝑏} ∩ {𝑐}) = ∅) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) | |
| 12 | 7, 8, 10, 11 | mp3an12i 1467 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) |
| 13 | hashprg 14434 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
| 14 | 13 | el2v 3487 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
| 15 | 14 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2) |
| 16 | 15 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏}) = 2) |
| 17 | hashsng 14408 | . . . . . . . . . . 11 ⊢ (𝑐 ∈ V → (♯‘{𝑐}) = 1) | |
| 18 | 17 | elv 3485 | . . . . . . . . . 10 ⊢ (♯‘{𝑐}) = 1 |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑐}) = 1) |
| 20 | 16, 19 | oveq12d 7449 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = (2 + 1)) |
| 21 | 2p1e3 12408 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 22 | 20, 21 | eqtrdi 2793 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = 3) |
| 23 | 6, 12, 22 | 3eqtrd 2781 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 24 | 3, 23 | sylan9eqr 2799 | . . . . 5 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3) |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 26 | 25 | exlimdv 1933 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 27 | 26 | exlimdvv 1934 | . 2 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 28 | 2, 27 | impbid 212 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 {csn 4626 {cpr 4628 {ctp 4630 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 1c1 11156 + caddc 11158 2c2 12321 3c3 12322 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-3o 8508 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: hash3tpb 14534 |
| Copyright terms: Public domain | W3C validator |