MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash3tpexb Structured version   Visualization version   GIF version

Theorem hash3tpexb 14419
Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025.)
Assertion
Ref Expression
hash3tpexb (𝑉𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎𝑏𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐

Proof of Theorem hash3tpexb
StepHypRef Expression
1 hash3tpde 14418 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))
21ex 412 . 2 (𝑉𝑊 → ((♯‘𝑉) = 3 → ∃𝑎𝑏𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})))
3 fveq2 6826 . . . . . 6 (𝑉 = {𝑎, 𝑏, 𝑐} → (♯‘𝑉) = (♯‘{𝑎, 𝑏, 𝑐}))
4 df-tp 4584 . . . . . . . . 9 {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐})
54a1i 11 . . . . . . . 8 ((𝑎𝑏𝑎𝑐𝑏𝑐) → {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐}))
65fveq2d 6830 . . . . . . 7 ((𝑎𝑏𝑎𝑐𝑏𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = (♯‘({𝑎, 𝑏} ∪ {𝑐})))
7 prfi 9232 . . . . . . . 8 {𝑎, 𝑏} ∈ Fin
8 snfi 8975 . . . . . . . 8 {𝑐} ∈ Fin
9 disjprsn 4668 . . . . . . . . 9 ((𝑎𝑐𝑏𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅)
1093adant1 1130 . . . . . . . 8 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅)
11 hashun 14307 . . . . . . . 8 (({𝑎, 𝑏} ∈ Fin ∧ {𝑐} ∈ Fin ∧ ({𝑎, 𝑏} ∩ {𝑐}) = ∅) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})))
127, 8, 10, 11mp3an12i 1467 . . . . . . 7 ((𝑎𝑏𝑎𝑐𝑏𝑐) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})))
13 hashprg 14320 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1413el2v 3445 . . . . . . . . . . 11 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
1514biimpi 216 . . . . . . . . . 10 (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2)
16153ad2ant1 1133 . . . . . . . . 9 ((𝑎𝑏𝑎𝑐𝑏𝑐) → (♯‘{𝑎, 𝑏}) = 2)
17 hashsng 14294 . . . . . . . . . . 11 (𝑐 ∈ V → (♯‘{𝑐}) = 1)
1817elv 3443 . . . . . . . . . 10 (♯‘{𝑐}) = 1
1918a1i 11 . . . . . . . . 9 ((𝑎𝑏𝑎𝑐𝑏𝑐) → (♯‘{𝑐}) = 1)
2016, 19oveq12d 7371 . . . . . . . 8 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = (2 + 1))
21 2p1e3 12283 . . . . . . . 8 (2 + 1) = 3
2220, 21eqtrdi 2780 . . . . . . 7 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = 3)
236, 12, 223eqtrd 2768 . . . . . 6 ((𝑎𝑏𝑎𝑐𝑏𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = 3)
243, 23sylan9eqr 2786 . . . . 5 (((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)
2524a1i 11 . . . 4 (𝑉𝑊 → (((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3))
2625exlimdv 1933 . . 3 (𝑉𝑊 → (∃𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3))
2726exlimdvv 1934 . 2 (𝑉𝑊 → (∃𝑎𝑏𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3))
282, 27impbid 212 1 (𝑉𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎𝑏𝑐((𝑎𝑏𝑎𝑐𝑏𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  cun 3903  cin 3904  c0 4286  {csn 4579  {cpr 4581  {ctp 4583  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029   + caddc 11031  2c2 12201  3c3 12202  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-3o 8397  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256
This theorem is referenced by:  hash3tpb  14420
  Copyright terms: Public domain W3C validator