| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash3tpexb | Structured version Visualization version GIF version | ||
| Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hash3tpexb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpde 14392 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| 3 | fveq2 6817 | . . . . . 6 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (♯‘𝑉) = (♯‘{𝑎, 𝑏, 𝑐})) | |
| 4 | df-tp 4579 | . . . . . . . . 9 ⊢ {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐}) | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐})) |
| 6 | 5 | fveq2d 6821 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = (♯‘({𝑎, 𝑏} ∪ {𝑐}))) |
| 7 | prfi 9203 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ Fin | |
| 8 | snfi 8960 | . . . . . . . 8 ⊢ {𝑐} ∈ Fin | |
| 9 | disjprsn 4665 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) | |
| 10 | 9 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) |
| 11 | hashun 14281 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ Fin ∧ {𝑐} ∈ Fin ∧ ({𝑎, 𝑏} ∩ {𝑐}) = ∅) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) | |
| 12 | 7, 8, 10, 11 | mp3an12i 1467 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) |
| 13 | hashprg 14294 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
| 14 | 13 | el2v 3441 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
| 15 | 14 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏}) = 2) |
| 17 | hashsng 14268 | . . . . . . . . . . 11 ⊢ (𝑐 ∈ V → (♯‘{𝑐}) = 1) | |
| 18 | 17 | elv 3439 | . . . . . . . . . 10 ⊢ (♯‘{𝑐}) = 1 |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑐}) = 1) |
| 20 | 16, 19 | oveq12d 7359 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = (2 + 1)) |
| 21 | 2p1e3 12254 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 22 | 20, 21 | eqtrdi 2781 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = 3) |
| 23 | 6, 12, 22 | 3eqtrd 2769 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 24 | 3, 23 | sylan9eqr 2787 | . . . . 5 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3) |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 26 | 25 | exlimdv 1934 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 27 | 26 | exlimdvv 1935 | . 2 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 28 | 2, 27 | impbid 212 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ∪ cun 3898 ∩ cin 3899 ∅c0 4281 {csn 4574 {cpr 4576 {ctp 4578 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 1c1 10999 + caddc 11001 2c2 12172 3c3 12173 ♯chash 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-3o 8382 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-hash 14230 |
| This theorem is referenced by: hash3tpb 14394 |
| Copyright terms: Public domain | W3C validator |