| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash3tpexb | Structured version Visualization version GIF version | ||
| Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hash3tpexb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpde 14410 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| 3 | fveq2 6831 | . . . . . 6 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (♯‘𝑉) = (♯‘{𝑎, 𝑏, 𝑐})) | |
| 4 | df-tp 4582 | . . . . . . . . 9 ⊢ {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐}) | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐})) |
| 6 | 5 | fveq2d 6835 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = (♯‘({𝑎, 𝑏} ∪ {𝑐}))) |
| 7 | prfi 9218 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ Fin | |
| 8 | snfi 8975 | . . . . . . . 8 ⊢ {𝑐} ∈ Fin | |
| 9 | disjprsn 4668 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) | |
| 10 | 9 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) |
| 11 | hashun 14299 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ Fin ∧ {𝑐} ∈ Fin ∧ ({𝑎, 𝑏} ∩ {𝑐}) = ∅) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) | |
| 12 | 7, 8, 10, 11 | mp3an12i 1467 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) |
| 13 | hashprg 14312 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
| 14 | 13 | el2v 3445 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
| 15 | 14 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏}) = 2) |
| 17 | hashsng 14286 | . . . . . . . . . . 11 ⊢ (𝑐 ∈ V → (♯‘{𝑐}) = 1) | |
| 18 | 17 | elv 3443 | . . . . . . . . . 10 ⊢ (♯‘{𝑐}) = 1 |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑐}) = 1) |
| 20 | 16, 19 | oveq12d 7373 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = (2 + 1)) |
| 21 | 2p1e3 12272 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 22 | 20, 21 | eqtrdi 2784 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = 3) |
| 23 | 6, 12, 22 | 3eqtrd 2772 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 24 | 3, 23 | sylan9eqr 2790 | . . . . 5 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3) |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 26 | 25 | exlimdv 1934 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 27 | 26 | exlimdvv 1935 | . 2 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 28 | 2, 27 | impbid 212 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 Vcvv 3438 ∪ cun 3897 ∩ cin 3898 ∅c0 4284 {csn 4577 {cpr 4579 {ctp 4581 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 1c1 11017 + caddc 11019 2c2 12190 3c3 12191 ♯chash 14247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-3o 8396 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-xnn0 12465 df-z 12479 df-uz 12743 df-fz 13418 df-hash 14248 |
| This theorem is referenced by: hash3tpb 14412 |
| Copyright terms: Public domain | W3C validator |