| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash3tpexb | Structured version Visualization version GIF version | ||
| Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hash3tpexb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpde 14465 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (♯‘𝑉) = (♯‘{𝑎, 𝑏, 𝑐})) | |
| 4 | df-tp 4597 | . . . . . . . . 9 ⊢ {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐}) | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → {𝑎, 𝑏, 𝑐} = ({𝑎, 𝑏} ∪ {𝑐})) |
| 6 | 5 | fveq2d 6865 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = (♯‘({𝑎, 𝑏} ∪ {𝑐}))) |
| 7 | prfi 9281 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ Fin | |
| 8 | snfi 9017 | . . . . . . . 8 ⊢ {𝑐} ∈ Fin | |
| 9 | disjprsn 4681 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) | |
| 10 | 9 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ({𝑎, 𝑏} ∩ {𝑐}) = ∅) |
| 11 | hashun 14354 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ Fin ∧ {𝑐} ∈ Fin ∧ ({𝑎, 𝑏} ∩ {𝑐}) = ∅) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) | |
| 12 | 7, 8, 10, 11 | mp3an12i 1467 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘({𝑎, 𝑏} ∪ {𝑐})) = ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐}))) |
| 13 | hashprg 14367 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
| 14 | 13 | el2v 3457 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
| 15 | 14 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏}) = 2) |
| 17 | hashsng 14341 | . . . . . . . . . . 11 ⊢ (𝑐 ∈ V → (♯‘{𝑐}) = 1) | |
| 18 | 17 | elv 3455 | . . . . . . . . . 10 ⊢ (♯‘{𝑐}) = 1 |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑐}) = 1) |
| 20 | 16, 19 | oveq12d 7408 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = (2 + 1)) |
| 21 | 2p1e3 12330 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 22 | 20, 21 | eqtrdi 2781 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((♯‘{𝑎, 𝑏}) + (♯‘{𝑐})) = 3) |
| 23 | 6, 12, 22 | 3eqtrd 2769 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 24 | 3, 23 | sylan9eqr 2787 | . . . . 5 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3) |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 26 | 25 | exlimdv 1933 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 27 | 26 | exlimdvv 1934 | . 2 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}) → (♯‘𝑉) = 3)) |
| 28 | 2, 27 | impbid 212 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 ↔ ∃𝑎∃𝑏∃𝑐((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ∧ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 {csn 4592 {cpr 4594 {ctp 4596 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 + caddc 11078 2c2 12248 3c3 12249 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-3o 8439 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: hash3tpb 14467 |
| Copyright terms: Public domain | W3C validator |