Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodcl Structured version   Visualization version   GIF version

Theorem iprodcl 15355
 Description: The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodcl.1 𝑍 = (ℤ𝑀)
iprodcl.2 (𝜑𝑀 ∈ ℤ)
iprodcl.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
iprodcl (𝜑 → ∏𝑘𝑍 𝐴 ∈ ℂ)
Distinct variable groups:   𝐴,𝑛,𝑦   𝑘,𝐹,𝑛,𝑦   𝜑,𝑘,𝑦   𝑘,𝑀,𝑛,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑛,𝑦
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem iprodcl
StepHypRef Expression
1 iprodcl.1 . . 3 𝑍 = (ℤ𝑀)
2 iprodcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 iprodcl.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodcl.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodcl.5 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
61, 2, 3, 4, 5iprod 15292 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , 𝐹)))
7 fclim 14910 . . 3 ⇝ :dom ⇝ ⟶ℂ
84, 5eqeltrd 2916 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
91, 3, 8ntrivcvg 15253 . . 3 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
10 ffvelrn 6840 . . 3 (( ⇝ :dom ⇝ ⟶ℂ ∧ seq𝑀( · , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq𝑀( · , 𝐹)) ∈ ℂ)
117, 9, 10sylancr 590 . 2 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) ∈ ℂ)
126, 11eqeltrd 2916 1 (𝜑 → ∏𝑘𝑍 𝐴 ∈ ℂ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134   class class class wbr 5052  dom cdm 5542  ⟶wf 6339  ‘cfv 6343  ℂcc 10533  0cc0 10535   · cmul 10540  ℤcz 11978  ℤ≥cuz 12240  seqcseq 13373   ⇝ cli 14841  ∏cprod 15259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator