MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumle Structured version   Visualization version   GIF version

Theorem isumle 15892
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumle.1 𝑍 = (ℤ𝑀)
isumle.2 (𝜑𝑀 ∈ ℤ)
isumle.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumle.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumle.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumle.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumle.7 ((𝜑𝑘𝑍) → 𝐴𝐵)
isumle.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumle.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumle (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumle
StepHypRef Expression
1 isumle.1 . . 3 𝑍 = (ℤ𝑀)
2 isumle.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 isumle.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4 climdm 15600 . . . 4 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
53, 4sylib 218 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
6 isumle.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
7 climdm 15600 . . . 4 (seq𝑀( + , 𝐺) ∈ dom ⇝ ↔ seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
86, 7sylib 218 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
9 isumle.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isumle.4 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
119, 10eqeltrd 2844 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
12 isumle.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
13 isumle.6 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1412, 13eqeltrd 2844 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
15 isumle.7 . . . 4 ((𝜑𝑘𝑍) → 𝐴𝐵)
1615, 9, 123brtr4d 5198 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
171, 2, 5, 8, 11, 14, 16iserle 15708 . 2 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ≤ ( ⇝ ‘seq𝑀( + , 𝐺)))
1810recnd 11318 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
191, 2, 9, 18isum 15767 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , 𝐹)))
2013recnd 11318 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
211, 2, 12, 20isum 15767 . 2 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐺)))
2217, 19, 213brtr4d 5198 1 (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  cfv 6573  cr 11183   + caddc 11187  cle 11325  cz 12639  cuz 12903  seqcseq 14052  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  isumless  15893  eftlub  16157  eflegeo  16169  rpnnen2lem7  16268  aaliou3lem3  26404  abelthlem7  26500  log2tlbnd  27006
  Copyright terms: Public domain W3C validator