MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumle Structured version   Visualization version   GIF version

Theorem isumle 15554
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumle.1 𝑍 = (ℤ𝑀)
isumle.2 (𝜑𝑀 ∈ ℤ)
isumle.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumle.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumle.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumle.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumle.7 ((𝜑𝑘𝑍) → 𝐴𝐵)
isumle.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumle.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumle (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumle
StepHypRef Expression
1 isumle.1 . . 3 𝑍 = (ℤ𝑀)
2 isumle.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 isumle.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4 climdm 15261 . . . 4 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
53, 4sylib 217 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
6 isumle.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
7 climdm 15261 . . . 4 (seq𝑀( + , 𝐺) ∈ dom ⇝ ↔ seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
86, 7sylib 217 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
9 isumle.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isumle.4 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
119, 10eqeltrd 2841 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
12 isumle.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
13 isumle.6 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1412, 13eqeltrd 2841 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
15 isumle.7 . . . 4 ((𝜑𝑘𝑍) → 𝐴𝐵)
1615, 9, 123brtr4d 5111 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
171, 2, 5, 8, 11, 14, 16iserle 15369 . 2 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ≤ ( ⇝ ‘seq𝑀( + , 𝐺)))
1810recnd 11004 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
191, 2, 9, 18isum 15429 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , 𝐹)))
2013recnd 11004 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
211, 2, 12, 20isum 15429 . 2 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐺)))
2217, 19, 213brtr4d 5111 1 (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  dom cdm 5590  cfv 6432  cr 10871   + caddc 10875  cle 11011  cz 12319  cuz 12581  seqcseq 13719  cli 15191  Σcsu 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396
This theorem is referenced by:  isumless  15555  eftlub  15816  eflegeo  15828  rpnnen2lem7  15927  aaliou3lem3  25502  abelthlem7  25595  log2tlbnd  26093
  Copyright terms: Public domain W3C validator