| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mclsssv | Structured version Visualization version GIF version | ||
| Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
| mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
| mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
| mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| mclsssv | ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mclsval.d | . . 3 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | mclsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | mclsval.c | . . 3 ⊢ 𝐶 = (mCls‘𝑇) | |
| 4 | mclsval.1 | . . 3 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
| 5 | mclsval.2 | . . 3 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
| 6 | mclsval.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
| 7 | eqid 2730 | . . 3 ⊢ (mVH‘𝑇) = (mVH‘𝑇) | |
| 8 | eqid 2730 | . . 3 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
| 9 | eqid 2730 | . . 3 ⊢ (mSubst‘𝑇) = (mSubst‘𝑇) | |
| 10 | eqid 2730 | . . 3 ⊢ (mVars‘𝑇) = (mVars‘𝑇) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsval 35552 | . 2 ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsssvlem 35551 | . 2 ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) |
| 13 | 11, 12 | eqsstrd 3989 | 1 ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3046 ∪ cun 3920 ⊆ wss 3922 〈cotp 4605 ∩ cint 4918 class class class wbr 5115 × cxp 5644 ran crn 5647 “ cima 5649 ‘cfv 6519 (class class class)co 7394 mAxcmax 35454 mExcmex 35456 mDVcmdv 35457 mVarscmvrs 35458 mSubstcmsub 35460 mVHcmvh 35461 mFScmfs 35465 mClscmcls 35466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-ot 4606 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-word 14489 df-concat 14546 df-s1 14571 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-gsum 17411 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-frmd 18782 df-mrex 35475 df-mex 35476 df-mrsub 35479 df-msub 35480 df-mvh 35481 df-mpst 35482 df-msr 35483 df-msta 35484 df-mfs 35485 df-mcls 35486 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |