| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mclsssv | Structured version Visualization version GIF version | ||
| Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
| mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
| mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
| mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| mclsssv | ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mclsval.d | . . 3 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | mclsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | mclsval.c | . . 3 ⊢ 𝐶 = (mCls‘𝑇) | |
| 4 | mclsval.1 | . . 3 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
| 5 | mclsval.2 | . . 3 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
| 6 | mclsval.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
| 7 | eqid 2729 | . . 3 ⊢ (mVH‘𝑇) = (mVH‘𝑇) | |
| 8 | eqid 2729 | . . 3 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
| 9 | eqid 2729 | . . 3 ⊢ (mSubst‘𝑇) = (mSubst‘𝑇) | |
| 10 | eqid 2729 | . . 3 ⊢ (mVars‘𝑇) = (mVars‘𝑇) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsval 35545 | . 2 ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsssvlem 35544 | . 2 ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) |
| 13 | 11, 12 | eqsstrd 3978 | 1 ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∪ cun 3909 ⊆ wss 3911 〈cotp 4593 ∩ cint 4906 class class class wbr 5102 × cxp 5629 ran crn 5632 “ cima 5634 ‘cfv 6500 (class class class)co 7370 mAxcmax 35447 mExcmex 35449 mDVcmdv 35450 mVarscmvrs 35451 mSubstcmsub 35453 mVHcmvh 35454 mFScmfs 35458 mClscmcls 35459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-pm 8780 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-n0 12422 df-z 12509 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-word 14458 df-concat 14515 df-s1 14540 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-0g 17382 df-gsum 17383 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-frmd 18760 df-mrex 35468 df-mex 35469 df-mrsub 35472 df-msub 35473 df-mvh 35474 df-mpst 35475 df-msr 35476 df-msta 35477 df-mfs 35478 df-mcls 35479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |