Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mclsssv | Structured version Visualization version GIF version |
Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
Ref | Expression |
---|---|
mclsssv | ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | . . 3 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | mclsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mclsval.c | . . 3 ⊢ 𝐶 = (mCls‘𝑇) | |
4 | mclsval.1 | . . 3 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
5 | mclsval.2 | . . 3 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
6 | mclsval.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
7 | eqid 2736 | . . 3 ⊢ (mVH‘𝑇) = (mVH‘𝑇) | |
8 | eqid 2736 | . . 3 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
9 | eqid 2736 | . . 3 ⊢ (mSubst‘𝑇) = (mSubst‘𝑇) | |
10 | eqid 2736 | . . 3 ⊢ (mVars‘𝑇) = (mVars‘𝑇) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsval 33574 | . 2 ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsssvlem 33573 | . 2 ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) |
13 | 11, 12 | eqsstrd 3964 | 1 ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3062 ∪ cun 3890 ⊆ wss 3892 〈cotp 4573 ∩ cint 4886 class class class wbr 5081 × cxp 5598 ran crn 5601 “ cima 5603 ‘cfv 6458 (class class class)co 7307 mAxcmax 33476 mExcmex 33478 mDVcmdv 33479 mVarscmvrs 33480 mSubstcmsub 33482 mVHcmvh 33483 mFScmfs 33487 mClscmcls 33488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-fzo 13433 df-seq 13772 df-hash 14095 df-word 14267 df-concat 14323 df-s1 14350 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-0g 17201 df-gsum 17202 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-frmd 18537 df-mrex 33497 df-mex 33498 df-mrsub 33501 df-msub 33502 df-mvh 33503 df-mpst 33504 df-msr 33505 df-msta 33506 df-mfs 33507 df-mcls 33508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |