![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mclsssv | Structured version Visualization version GIF version |
Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | β’ π· = (mDVβπ) |
mclsval.e | β’ πΈ = (mExβπ) |
mclsval.c | β’ πΆ = (mClsβπ) |
mclsval.1 | β’ (π β π β mFS) |
mclsval.2 | β’ (π β πΎ β π·) |
mclsval.3 | β’ (π β π΅ β πΈ) |
Ref | Expression |
---|---|
mclsssv | β’ (π β (πΎπΆπ΅) β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | . . 3 β’ π· = (mDVβπ) | |
2 | mclsval.e | . . 3 β’ πΈ = (mExβπ) | |
3 | mclsval.c | . . 3 β’ πΆ = (mClsβπ) | |
4 | mclsval.1 | . . 3 β’ (π β π β mFS) | |
5 | mclsval.2 | . . 3 β’ (π β πΎ β π·) | |
6 | mclsval.3 | . . 3 β’ (π β π΅ β πΈ) | |
7 | eqid 2730 | . . 3 β’ (mVHβπ) = (mVHβπ) | |
8 | eqid 2730 | . . 3 β’ (mAxβπ) = (mAxβπ) | |
9 | eqid 2730 | . . 3 β’ (mSubstβπ) = (mSubstβπ) | |
10 | eqid 2730 | . . 3 β’ (mVarsβπ) = (mVarsβπ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsval 34852 | . 2 β’ (π β (πΎπΆπ΅) = β© {π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mclsssvlem 34851 | . 2 β’ (π β β© {π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))} β πΈ) |
13 | 11, 12 | eqsstrd 4019 | 1 β’ (π β (πΎπΆπ΅) β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 βwal 1537 = wceq 1539 β wcel 2104 {cab 2707 βwral 3059 βͺ cun 3945 β wss 3947 β¨cotp 4635 β© cint 4949 class class class wbr 5147 Γ cxp 5673 ran crn 5676 β cima 5678 βcfv 6542 (class class class)co 7411 mAxcmax 34754 mExcmex 34756 mDVcmdv 34757 mVarscmvrs 34758 mSubstcmsub 34760 mVHcmvh 34761 mFScmfs 34765 mClscmcls 34766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-gsum 17392 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-frmd 18766 df-mrex 34775 df-mex 34776 df-mrsub 34779 df-msub 34780 df-mvh 34781 df-mpst 34782 df-msr 34783 df-msta 34784 df-mfs 34785 df-mcls 34786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |