Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmcoaddpsr Structured version   Visualization version   GIF version

Theorem mhmcoaddpsr 42523
Description: Show that the ring homomorphism in rhmpsr 42525 preserves addition. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
mhmcoaddpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
mhmcoaddpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
mhmcoaddpsr.b 𝐵 = (Base‘𝑃)
mhmcoaddpsr.c 𝐶 = (Base‘𝑄)
mhmcoaddpsr.1 + = (+g𝑃)
mhmcoaddpsr.2 = (+g𝑄)
mhmcoaddpsr.h (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
mhmcoaddpsr.f (𝜑𝐹𝐵)
mhmcoaddpsr.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mhmcoaddpsr (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem mhmcoaddpsr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mhmcoaddpsr.h . . 3 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
2 fvexd 6841 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
3 ovex 7386 . . . . . 6 (ℕ0m 𝐼) ∈ V
43rabex 5281 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
54a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
6 mhmcoaddpsr.p . . . . 5 𝑃 = (𝐼 mPwSer 𝑅)
7 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 mhmcoaddpsr.b . . . . 5 𝐵 = (Base‘𝑃)
10 mhmcoaddpsr.f . . . . 5 (𝜑𝐹𝐵)
116, 7, 8, 9, 10psrelbas 21859 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
122, 5, 11elmapdd 8775 . . 3 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 mhmcoaddpsr.g . . . . 5 (𝜑𝐺𝐵)
146, 7, 8, 9, 13psrelbas 21859 . . . 4 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
152, 5, 14elmapdd 8775 . . 3 (𝜑𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
17 eqid 2729 . . . 4 (+g𝑆) = (+g𝑆)
187, 16, 17mhmvlin 18693 . . 3 ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
191, 12, 15, 18syl3anc 1373 . 2 (𝜑 → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
20 mhmcoaddpsr.1 . . . 4 + = (+g𝑃)
216, 9, 16, 20, 10, 13psradd 21862 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
2221coeq2d 5809 . 2 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹f (+g𝑅)𝐺)))
23 mhmcoaddpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
24 mhmcoaddpsr.c . . 3 𝐶 = (Base‘𝑄)
25 mhmcoaddpsr.2 . . 3 = (+g𝑄)
266, 23, 9, 24, 1, 10mhmcopsr 42522 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
276, 23, 9, 24, 1, 13mhmcopsr 42522 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
2823, 24, 17, 25, 26, 27psradd 21862 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
2919, 22, 283eqtr4d 2774 1 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  ccnv 5622  cima 5626  ccom 5627  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  +gcplusg 17179   MndHom cmhm 18673   mPwSer cmps 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-psr 21834
This theorem is referenced by:  rhmpsr  42525
  Copyright terms: Public domain W3C validator