| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmcoaddpsr | Structured version Visualization version GIF version | ||
| Description: Show that the ring homomorphism in rhmpsr 42591 preserves addition. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| mhmcoaddpsr.p | ⊢ 𝑃 = (𝐼 mPwSer 𝑅) |
| mhmcoaddpsr.q | ⊢ 𝑄 = (𝐼 mPwSer 𝑆) |
| mhmcoaddpsr.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcoaddpsr.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcoaddpsr.1 | ⊢ + = (+g‘𝑃) |
| mhmcoaddpsr.2 | ⊢ ✚ = (+g‘𝑄) |
| mhmcoaddpsr.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcoaddpsr.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mhmcoaddpsr.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcoaddpsr | ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddpsr.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 2 | fvexd 6837 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 3 | ovex 7379 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 4 | 3 | rabex 5277 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 6 | mhmcoaddpsr.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPwSer 𝑅) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 9 | mhmcoaddpsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | mhmcoaddpsr.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 11 | 6, 7, 8, 9, 10 | psrelbas 21872 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | 2, 5, 11 | elmapdd 8765 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 13 | mhmcoaddpsr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 14 | 6, 7, 8, 9, 13 | psrelbas 21872 | . . . 4 ⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 15 | 2, 5, 14 | elmapdd 8765 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 16 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 17 | eqid 2731 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 18 | 7, 16, 17 | mhmvlin 18709 | . . 3 ⊢ ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 19 | 1, 12, 15, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 20 | mhmcoaddpsr.1 | . . . 4 ⊢ + = (+g‘𝑃) | |
| 21 | 6, 9, 16, 20, 10, 13 | psradd 21875 | . . 3 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝐹 ∘f (+g‘𝑅)𝐺)) |
| 22 | 21 | coeq2d 5802 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺))) |
| 23 | mhmcoaddpsr.q | . . 3 ⊢ 𝑄 = (𝐼 mPwSer 𝑆) | |
| 24 | mhmcoaddpsr.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 25 | mhmcoaddpsr.2 | . . 3 ⊢ ✚ = (+g‘𝑄) | |
| 26 | 6, 23, 9, 24, 1, 10 | mhmcopsr 42588 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| 27 | 6, 23, 9, 24, 1, 13 | mhmcopsr 42588 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
| 28 | 23, 24, 17, 25, 26, 27 | psradd 21875 | . 2 ⊢ (𝜑 → ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 29 | 19, 22, 28 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ◡ccnv 5615 “ cima 5619 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Fincfn 8869 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 +gcplusg 17161 MndHom cmhm 18689 mPwSer cmps 21842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-psr 21847 |
| This theorem is referenced by: rhmpsr 42591 |
| Copyright terms: Public domain | W3C validator |