Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmcoaddpsr Structured version   Visualization version   GIF version

Theorem mhmcoaddpsr 42589
Description: Show that the ring homomorphism in rhmpsr 42591 preserves addition. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
mhmcoaddpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
mhmcoaddpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
mhmcoaddpsr.b 𝐵 = (Base‘𝑃)
mhmcoaddpsr.c 𝐶 = (Base‘𝑄)
mhmcoaddpsr.1 + = (+g𝑃)
mhmcoaddpsr.2 = (+g𝑄)
mhmcoaddpsr.h (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
mhmcoaddpsr.f (𝜑𝐹𝐵)
mhmcoaddpsr.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mhmcoaddpsr (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem mhmcoaddpsr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mhmcoaddpsr.h . . 3 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
2 fvexd 6837 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
3 ovex 7379 . . . . . 6 (ℕ0m 𝐼) ∈ V
43rabex 5277 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
54a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
6 mhmcoaddpsr.p . . . . 5 𝑃 = (𝐼 mPwSer 𝑅)
7 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 mhmcoaddpsr.b . . . . 5 𝐵 = (Base‘𝑃)
10 mhmcoaddpsr.f . . . . 5 (𝜑𝐹𝐵)
116, 7, 8, 9, 10psrelbas 21872 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
122, 5, 11elmapdd 8765 . . 3 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 mhmcoaddpsr.g . . . . 5 (𝜑𝐺𝐵)
146, 7, 8, 9, 13psrelbas 21872 . . . 4 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
152, 5, 14elmapdd 8765 . . 3 (𝜑𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
17 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
187, 16, 17mhmvlin 18709 . . 3 ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
191, 12, 15, 18syl3anc 1373 . 2 (𝜑 → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
20 mhmcoaddpsr.1 . . . 4 + = (+g𝑃)
216, 9, 16, 20, 10, 13psradd 21875 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
2221coeq2d 5802 . 2 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹f (+g𝑅)𝐺)))
23 mhmcoaddpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
24 mhmcoaddpsr.c . . 3 𝐶 = (Base‘𝑄)
25 mhmcoaddpsr.2 . . 3 = (+g𝑄)
266, 23, 9, 24, 1, 10mhmcopsr 42588 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
276, 23, 9, 24, 1, 13mhmcopsr 42588 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
2823, 24, 17, 25, 26, 27psradd 21875 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
2919, 22, 283eqtr4d 2776 1 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  ccnv 5615  cima 5619  ccom 5620  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  +gcplusg 17161   MndHom cmhm 18689   mPwSer cmps 21842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-psr 21847
This theorem is referenced by:  rhmpsr  42591
  Copyright terms: Public domain W3C validator