Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmcoaddpsr Structured version   Visualization version   GIF version

Theorem mhmcoaddpsr 42538
Description: Show that the ring homomorphism in rhmpsr 42540 preserves addition. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
mhmcoaddpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
mhmcoaddpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
mhmcoaddpsr.b 𝐵 = (Base‘𝑃)
mhmcoaddpsr.c 𝐶 = (Base‘𝑄)
mhmcoaddpsr.1 + = (+g𝑃)
mhmcoaddpsr.2 = (+g𝑄)
mhmcoaddpsr.h (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
mhmcoaddpsr.f (𝜑𝐹𝐵)
mhmcoaddpsr.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mhmcoaddpsr (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem mhmcoaddpsr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mhmcoaddpsr.h . . 3 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
2 fvexd 6873 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
3 ovex 7420 . . . . . 6 (ℕ0m 𝐼) ∈ V
43rabex 5294 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
54a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
6 mhmcoaddpsr.p . . . . 5 𝑃 = (𝐼 mPwSer 𝑅)
7 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 mhmcoaddpsr.b . . . . 5 𝐵 = (Base‘𝑃)
10 mhmcoaddpsr.f . . . . 5 (𝜑𝐹𝐵)
116, 7, 8, 9, 10psrelbas 21843 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
122, 5, 11elmapdd 8814 . . 3 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 mhmcoaddpsr.g . . . . 5 (𝜑𝐺𝐵)
146, 7, 8, 9, 13psrelbas 21843 . . . 4 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
152, 5, 14elmapdd 8814 . . 3 (𝜑𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
17 eqid 2729 . . . 4 (+g𝑆) = (+g𝑆)
187, 16, 17mhmvlin 18728 . . 3 ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
191, 12, 15, 18syl3anc 1373 . 2 (𝜑 → (𝐻 ∘ (𝐹f (+g𝑅)𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
20 mhmcoaddpsr.1 . . . 4 + = (+g𝑃)
216, 9, 16, 20, 10, 13psradd 21846 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
2221coeq2d 5826 . 2 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹f (+g𝑅)𝐺)))
23 mhmcoaddpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
24 mhmcoaddpsr.c . . 3 𝐶 = (Base‘𝑄)
25 mhmcoaddpsr.2 . . 3 = (+g𝑄)
266, 23, 9, 24, 1, 10mhmcopsr 42537 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
276, 23, 9, 24, 1, 13mhmcopsr 42537 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
2823, 24, 17, 25, 26, 27psradd 21846 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = ((𝐻𝐹) ∘f (+g𝑆)(𝐻𝐺)))
2919, 22, 283eqtr4d 2774 1 (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  ccnv 5637  cima 5641  ccom 5642  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220   MndHom cmhm 18708   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-psr 21818
This theorem is referenced by:  rhmpsr  42540
  Copyright terms: Public domain W3C validator