Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmcopsr Structured version   Visualization version   GIF version

Theorem mhmcopsr 42667
Description: The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
mhmcopsr.p 𝑃 = (𝐼 mPwSer 𝑅)
mhmcopsr.q 𝑄 = (𝐼 mPwSer 𝑆)
mhmcopsr.b 𝐵 = (Base‘𝑃)
mhmcopsr.c 𝐶 = (Base‘𝑄)
mhmcopsr.h (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
mhmcopsr.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mhmcopsr (𝜑 → (𝐻𝐹) ∈ 𝐶)

Proof of Theorem mhmcopsr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvexd 6843 . . 3 (𝜑 → (Base‘𝑆) ∈ V)
2 ovex 7385 . . . . 5 (ℕ0m 𝐼) ∈ V
32rabex 5279 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
43a1i 11 . . 3 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
5 mhmcopsr.h . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
6 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
86, 7mhmf 18699 . . . . 5 (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
95, 8syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
10 mhmcopsr.p . . . . 5 𝑃 = (𝐼 mPwSer 𝑅)
11 eqid 2733 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 mhmcopsr.b . . . . 5 𝐵 = (Base‘𝑃)
13 mhmcopsr.f . . . . 5 (𝜑𝐹𝐵)
1410, 6, 11, 12, 13psrelbas 21873 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
159, 14fcod 6681 . . 3 (𝜑 → (𝐻𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆))
161, 4, 15elmapdd 8771 . 2 (𝜑 → (𝐻𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
17 mhmcopsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
18 mhmcopsr.c . . 3 𝐶 = (Base‘𝑄)
19 reldmpsr 21853 . . . . . 6 Rel dom mPwSer
2019, 10, 12elbasov 17129 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2113, 20syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2221simpld 494 . . 3 (𝜑𝐼 ∈ V)
2317, 7, 11, 18, 22psrbas 21872 . 2 (𝜑𝐶 = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2416, 23eleqtrrd 2836 1 (𝜑 → (𝐻𝐹) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  ccnv 5618  cima 5622  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875  cn 12132  0cn0 12388  Basecbs 17122   MndHom cmhm 18691   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-mhm 18693  df-psr 21848
This theorem is referenced by:  mhmcoaddpsr  42668  rhmcomulpsr  42669  rhmpsr  42670
  Copyright terms: Public domain W3C validator