Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr Structured version   Visualization version   GIF version

Theorem rhmpsr 42533
Description: Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
rhmpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
rhmpsr.b 𝐵 = (Base‘𝑃)
rhmpsr.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr.i (𝜑𝐼𝑉)
rhmpsr.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑃,𝑝   𝑄,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem rhmpsr
Dummy variables 𝑥 𝑦 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpsr.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2729 . 2 (1r𝑃) = (1r𝑃)
3 eqid 2729 . 2 (1r𝑄) = (1r𝑄)
4 eqid 2729 . 2 (.r𝑃) = (.r𝑃)
5 eqid 2729 . 2 (.r𝑄) = (.r𝑄)
6 rhmpsr.p . . 3 𝑃 = (𝐼 mPwSer 𝑅)
7 rhmpsr.i . . 3 (𝜑𝐼𝑉)
8 rhmpsr.h . . . 4 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
9 rhmrcl1 20396 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
108, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
116, 7, 10psrring 21912 . 2 (𝜑𝑃 ∈ Ring)
12 rhmpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
13 rhmrcl2 20397 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
148, 13syl 17 . . 3 (𝜑𝑆 ∈ Ring)
1512, 7, 14psrring 21912 . 2 (𝜑𝑄 ∈ Ring)
16 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
18 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
196, 7, 10, 16, 17, 18, 2psr1 21913 . . . . 5 (𝜑 → (1r𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2019coeq2d 5816 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
21 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2729 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2321, 22rhmf 20405 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
248, 23syl 17 . . . . 5 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
2521, 18ringidcl 20185 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2610, 25syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2721, 17ring0cl 20187 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2810, 27syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2926, 28ifcld 4531 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3029adantr 480 . . . . 5 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3124, 30cofmpt 7086 . . . 4 (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
32 fvif 6856 . . . . . 6 (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
33 eqid 2729 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3418, 33rhm1 20409 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
358, 34syl 17 . . . . . . 7 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
36 rhmghm 20404 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
37 eqid 2729 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3817, 37ghmid 19136 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
398, 36, 383syl 18 . . . . . . 7 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
4035, 39ifeq12d 4506 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4132, 40eqtrid 2776 . . . . 5 (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4241mpteq2dv 5196 . . . 4 (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
4320, 31, 423eqtrd 2768 . . 3 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
44 rhmpsr.f . . . 4 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
45 coeq2 5812 . . . 4 (𝑝 = (1r𝑃) → (𝐻𝑝) = (𝐻 ∘ (1r𝑃)))
461, 2ringidcl 20185 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
4711, 46syl 17 . . . 4 (𝜑 → (1r𝑃) ∈ 𝐵)
488, 47coexd 7887 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) ∈ V)
4944, 45, 47, 48fvmptd3 6973 . . 3 (𝜑 → (𝐹‘(1r𝑃)) = (𝐻 ∘ (1r𝑃)))
5012, 7, 14, 16, 37, 33, 3psr1 21913 . . 3 (𝜑 → (1r𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
5143, 49, 503eqtr4d 2774 . 2 (𝜑 → (𝐹‘(1r𝑃)) = (1r𝑄))
52 eqid 2729 . . . 4 (Base‘𝑄) = (Base‘𝑄)
538adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆))
54 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
55 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
566, 12, 1, 52, 4, 5, 53, 54, 55rhmcomulpsr 42532 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
57 coeq2 5812 . . . 4 (𝑝 = (𝑥(.r𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
5811adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
591, 4, 58, 54, 55ringcld 20180 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
6053, 59coexd 7887 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) ∈ V)
6144, 57, 59, 60fvmptd3 6973 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
62 coeq2 5812 . . . . 5 (𝑝 = 𝑥 → (𝐻𝑝) = (𝐻𝑥))
6353, 54coexd 7887 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ V)
6444, 62, 54, 63fvmptd3 6973 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝐻𝑥))
65 coeq2 5812 . . . . 5 (𝑝 = 𝑦 → (𝐻𝑝) = (𝐻𝑦))
6653, 55coexd 7887 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ V)
6744, 65, 55, 66fvmptd3 6973 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝐻𝑦))
6864, 67oveq12d 7387 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r𝑄)(𝐹𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
6956, 61, 683eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = ((𝐹𝑥)(.r𝑄)(𝐹𝑦)))
70 eqid 2729 . 2 (+g𝑃) = (+g𝑃)
71 eqid 2729 . 2 (+g𝑄) = (+g𝑄)
72 ghmmhm 19140 . . . . . 6 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
738, 36, 723syl 18 . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
7473adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆))
75 simpr 484 . . . 4 ((𝜑𝑝𝐵) → 𝑝𝐵)
766, 12, 1, 52, 74, 75mhmcopsr 42530 . . 3 ((𝜑𝑝𝐵) → (𝐻𝑝) ∈ (Base‘𝑄))
7776, 44fmptd 7068 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑄))
7853, 36, 723syl 18 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆))
796, 12, 1, 52, 70, 71, 78, 54, 55mhmcoaddpsr 42531 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
80 coeq2 5812 . . . 4 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8158ringgrpd 20162 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
821, 70, 81, 54, 55grpcld 18861 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
8353, 82coexd 7887 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) ∈ V)
8444, 80, 82, 83fvmptd3 6973 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8564, 67oveq12d 7387 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑄)(𝐹𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
8679, 84, 853eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = ((𝐹𝑥)(+g𝑄)(𝐹𝑦)))
871, 2, 3, 4, 5, 11, 15, 51, 69, 52, 70, 71, 77, 86isrhmd 20408 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  ifcif 4484  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  cima 5634  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  cn 12162  0cn0 12418  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   MndHom cmhm 18690   GrpHom cghm 19126  1rcur 20101  Ringcrg 20153   RingHom crh 20389   mPwSer cmps 21846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-mulg 18982  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-rhm 20392  df-psr 21851
This theorem is referenced by:  rhmpsr1  42534
  Copyright terms: Public domain W3C validator