Step | Hyp | Ref
| Expression |
1 | | rhmpsr.b |
. 2
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2726 |
. 2
⊢
(1r‘𝑃) = (1r‘𝑃) |
3 | | eqid 2726 |
. 2
⊢
(1r‘𝑄) = (1r‘𝑄) |
4 | | eqid 2726 |
. 2
⊢
(.r‘𝑃) = (.r‘𝑃) |
5 | | eqid 2726 |
. 2
⊢
(.r‘𝑄) = (.r‘𝑄) |
6 | | rhmpsr.p |
. . 3
⊢ 𝑃 = (𝐼 mPwSer 𝑅) |
7 | | rhmpsr.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
8 | | rhmpsr.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
9 | | rhmrcl1 20453 |
. . . 4
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 6, 7, 10 | psrring 21974 |
. 2
⊢ (𝜑 → 𝑃 ∈ Ring) |
12 | | rhmpsr.q |
. . 3
⊢ 𝑄 = (𝐼 mPwSer 𝑆) |
13 | | rhmrcl2 20454 |
. . . 4
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
14 | 8, 13 | syl 17 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Ring) |
15 | 12, 7, 14 | psrring 21974 |
. 2
⊢ (𝜑 → 𝑄 ∈ Ring) |
16 | | eqid 2726 |
. . . . . 6
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
17 | | eqid 2726 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
18 | | eqid 2726 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
19 | 6, 7, 10, 16, 17, 18, 2 | psr1 21975 |
. . . . 5
⊢ (𝜑 → (1r‘𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 19 | coeq2d 5861 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))))) |
21 | | eqid 2726 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | | eqid 2726 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
23 | 21, 22 | rhmf 20462 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
24 | 8, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
25 | 21, 18 | ringidcl 20240 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
26 | 10, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
27 | 21, 17 | ring0cl 20241 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
28 | 10, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
29 | 26, 28 | ifcld 4571 |
. . . . . 6
⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
30 | 29 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
31 | 24, 30 | cofmpt 7137 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))))) |
32 | | fvif 6908 |
. . . . . 6
⊢ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) |
33 | | eqid 2726 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
34 | 18, 33 | rhm1 20466 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
35 | 8, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
36 | | rhmghm 20461 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆)) |
37 | | eqid 2726 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
38 | 17, 37 | ghmid 19211 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
39 | 8, 36, 38 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
40 | 35, 39 | ifeq12d 4546 |
. . . . . 6
⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆))) |
41 | 32, 40 | eqtrid 2778 |
. . . . 5
⊢ (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆))) |
42 | 41 | mpteq2dv 5247 |
. . . 4
⊢ (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
43 | 20, 31, 42 | 3eqtrd 2770 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
44 | | rhmpsr.f |
. . . 4
⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
45 | | coeq2 5857 |
. . . 4
⊢ (𝑝 = (1r‘𝑃) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (1r‘𝑃))) |
46 | 1, 2 | ringidcl 20240 |
. . . . 5
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ 𝐵) |
47 | 11, 46 | syl 17 |
. . . 4
⊢ (𝜑 → (1r‘𝑃) ∈ 𝐵) |
48 | 8, 47 | coexd 7935 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) ∈ V) |
49 | 44, 45, 47, 48 | fvmptd3 7023 |
. . 3
⊢ (𝜑 → (𝐹‘(1r‘𝑃)) = (𝐻 ∘ (1r‘𝑃))) |
50 | 12, 7, 14, 16, 37, 33, 3 | psr1 21975 |
. . 3
⊢ (𝜑 → (1r‘𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
51 | 43, 49, 50 | 3eqtr4d 2776 |
. 2
⊢ (𝜑 → (𝐹‘(1r‘𝑃)) = (1r‘𝑄)) |
52 | | eqid 2726 |
. . . 4
⊢
(Base‘𝑄) =
(Base‘𝑄) |
53 | 8 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
54 | | simprl 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
55 | | simprr 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
56 | 6, 12, 1, 52, 4, 5,
53, 54, 55 | rhmcomulpsr 42240 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(.r‘𝑃)𝑦)) = ((𝐻 ∘ 𝑥)(.r‘𝑄)(𝐻 ∘ 𝑦))) |
57 | | coeq2 5857 |
. . . 4
⊢ (𝑝 = (𝑥(.r‘𝑃)𝑦) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (𝑥(.r‘𝑃)𝑦))) |
58 | 11 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
59 | 1, 4, 58, 54, 55 | ringcld 20237 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
60 | 53, 59 | coexd 7935 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(.r‘𝑃)𝑦)) ∈ V) |
61 | 44, 57, 59, 60 | fvmptd3 7023 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(.r‘𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r‘𝑃)𝑦))) |
62 | | coeq2 5857 |
. . . . 5
⊢ (𝑝 = 𝑥 → (𝐻 ∘ 𝑝) = (𝐻 ∘ 𝑥)) |
63 | 53, 54 | coexd 7935 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ 𝑥) ∈ V) |
64 | 44, 62, 54, 63 | fvmptd3 7023 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) = (𝐻 ∘ 𝑥)) |
65 | | coeq2 5857 |
. . . . 5
⊢ (𝑝 = 𝑦 → (𝐻 ∘ 𝑝) = (𝐻 ∘ 𝑦)) |
66 | 53, 55 | coexd 7935 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ 𝑦) ∈ V) |
67 | 44, 65, 55, 66 | fvmptd3 7023 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) = (𝐻 ∘ 𝑦)) |
68 | 64, 67 | oveq12d 7433 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(.r‘𝑄)(𝐹‘𝑦)) = ((𝐻 ∘ 𝑥)(.r‘𝑄)(𝐻 ∘ 𝑦))) |
69 | 56, 61, 68 | 3eqtr4d 2776 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(.r‘𝑃)𝑦)) = ((𝐹‘𝑥)(.r‘𝑄)(𝐹‘𝑦))) |
70 | | eqid 2726 |
. 2
⊢
(+g‘𝑃) = (+g‘𝑃) |
71 | | eqid 2726 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
72 | | ghmmhm 19215 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
73 | 8, 36, 72 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
74 | 73 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
75 | | simpr 483 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
76 | 6, 12, 1, 52, 74, 75 | mhmcopsr 42238 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝐻 ∘ 𝑝) ∈ (Base‘𝑄)) |
77 | 76, 44 | fmptd 7119 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑄)) |
78 | 53, 36, 72 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
79 | 6, 12, 1, 52, 70, 71, 78, 54, 55 | mhmcoaddpsr 42239 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(+g‘𝑃)𝑦)) = ((𝐻 ∘ 𝑥)(+g‘𝑄)(𝐻 ∘ 𝑦))) |
80 | | coeq2 5857 |
. . . 4
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (𝑥(+g‘𝑃)𝑦))) |
81 | 58 | ringgrpd 20220 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Grp) |
82 | 1, 70, 81, 54, 55 | grpcld 18936 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) ∈ 𝐵) |
83 | 53, 82 | coexd 7935 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(+g‘𝑃)𝑦)) ∈ V) |
84 | 44, 80, 82, 83 | fvmptd3 7023 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(+g‘𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g‘𝑃)𝑦))) |
85 | 64, 67 | oveq12d 7433 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘𝑄)(𝐹‘𝑦)) = ((𝐻 ∘ 𝑥)(+g‘𝑄)(𝐻 ∘ 𝑦))) |
86 | 79, 84, 85 | 3eqtr4d 2776 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(+g‘𝑃)𝑦)) = ((𝐹‘𝑥)(+g‘𝑄)(𝐹‘𝑦))) |
87 | 1, 2, 3, 4, 5, 11,
15, 51, 69, 52, 70, 71, 77, 86 | isrhmd 20465 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |