Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr Structured version   Visualization version   GIF version

Theorem rhmpsr 42241
Description: Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
rhmpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
rhmpsr.b 𝐵 = (Base‘𝑃)
rhmpsr.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr.i (𝜑𝐼𝑉)
rhmpsr.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑃,𝑝   𝑄,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem rhmpsr
Dummy variables 𝑥 𝑦 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpsr.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2726 . 2 (1r𝑃) = (1r𝑃)
3 eqid 2726 . 2 (1r𝑄) = (1r𝑄)
4 eqid 2726 . 2 (.r𝑃) = (.r𝑃)
5 eqid 2726 . 2 (.r𝑄) = (.r𝑄)
6 rhmpsr.p . . 3 𝑃 = (𝐼 mPwSer 𝑅)
7 rhmpsr.i . . 3 (𝜑𝐼𝑉)
8 rhmpsr.h . . . 4 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
9 rhmrcl1 20453 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
108, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
116, 7, 10psrring 21974 . 2 (𝜑𝑃 ∈ Ring)
12 rhmpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
13 rhmrcl2 20454 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
148, 13syl 17 . . 3 (𝜑𝑆 ∈ Ring)
1512, 7, 14psrring 21974 . 2 (𝜑𝑄 ∈ Ring)
16 eqid 2726 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 eqid 2726 . . . . . 6 (0g𝑅) = (0g𝑅)
18 eqid 2726 . . . . . 6 (1r𝑅) = (1r𝑅)
196, 7, 10, 16, 17, 18, 2psr1 21975 . . . . 5 (𝜑 → (1r𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2019coeq2d 5861 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
21 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2726 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2321, 22rhmf 20462 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
248, 23syl 17 . . . . 5 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
2521, 18ringidcl 20240 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2610, 25syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2721, 17ring0cl 20241 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2810, 27syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2926, 28ifcld 4571 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3029adantr 479 . . . . 5 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3124, 30cofmpt 7137 . . . 4 (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
32 fvif 6908 . . . . . 6 (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
33 eqid 2726 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3418, 33rhm1 20466 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
358, 34syl 17 . . . . . . 7 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
36 rhmghm 20461 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
37 eqid 2726 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3817, 37ghmid 19211 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
398, 36, 383syl 18 . . . . . . 7 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
4035, 39ifeq12d 4546 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4132, 40eqtrid 2778 . . . . 5 (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4241mpteq2dv 5247 . . . 4 (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
4320, 31, 423eqtrd 2770 . . 3 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
44 rhmpsr.f . . . 4 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
45 coeq2 5857 . . . 4 (𝑝 = (1r𝑃) → (𝐻𝑝) = (𝐻 ∘ (1r𝑃)))
461, 2ringidcl 20240 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
4711, 46syl 17 . . . 4 (𝜑 → (1r𝑃) ∈ 𝐵)
488, 47coexd 7935 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) ∈ V)
4944, 45, 47, 48fvmptd3 7023 . . 3 (𝜑 → (𝐹‘(1r𝑃)) = (𝐻 ∘ (1r𝑃)))
5012, 7, 14, 16, 37, 33, 3psr1 21975 . . 3 (𝜑 → (1r𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
5143, 49, 503eqtr4d 2776 . 2 (𝜑 → (𝐹‘(1r𝑃)) = (1r𝑄))
52 eqid 2726 . . . 4 (Base‘𝑄) = (Base‘𝑄)
538adantr 479 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆))
54 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
55 simprr 771 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
566, 12, 1, 52, 4, 5, 53, 54, 55rhmcomulpsr 42240 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
57 coeq2 5857 . . . 4 (𝑝 = (𝑥(.r𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
5811adantr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
591, 4, 58, 54, 55ringcld 20237 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
6053, 59coexd 7935 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) ∈ V)
6144, 57, 59, 60fvmptd3 7023 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
62 coeq2 5857 . . . . 5 (𝑝 = 𝑥 → (𝐻𝑝) = (𝐻𝑥))
6353, 54coexd 7935 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ V)
6444, 62, 54, 63fvmptd3 7023 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝐻𝑥))
65 coeq2 5857 . . . . 5 (𝑝 = 𝑦 → (𝐻𝑝) = (𝐻𝑦))
6653, 55coexd 7935 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ V)
6744, 65, 55, 66fvmptd3 7023 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝐻𝑦))
6864, 67oveq12d 7433 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r𝑄)(𝐹𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
6956, 61, 683eqtr4d 2776 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = ((𝐹𝑥)(.r𝑄)(𝐹𝑦)))
70 eqid 2726 . 2 (+g𝑃) = (+g𝑃)
71 eqid 2726 . 2 (+g𝑄) = (+g𝑄)
72 ghmmhm 19215 . . . . . 6 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
738, 36, 723syl 18 . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
7473adantr 479 . . . 4 ((𝜑𝑝𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆))
75 simpr 483 . . . 4 ((𝜑𝑝𝐵) → 𝑝𝐵)
766, 12, 1, 52, 74, 75mhmcopsr 42238 . . 3 ((𝜑𝑝𝐵) → (𝐻𝑝) ∈ (Base‘𝑄))
7776, 44fmptd 7119 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑄))
7853, 36, 723syl 18 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆))
796, 12, 1, 52, 70, 71, 78, 54, 55mhmcoaddpsr 42239 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
80 coeq2 5857 . . . 4 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8158ringgrpd 20220 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
821, 70, 81, 54, 55grpcld 18936 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
8353, 82coexd 7935 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) ∈ V)
8444, 80, 82, 83fvmptd3 7023 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8564, 67oveq12d 7433 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑄)(𝐹𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
8679, 84, 853eqtr4d 2776 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = ((𝐹𝑥)(+g𝑄)(𝐹𝑦)))
871, 2, 3, 4, 5, 11, 15, 51, 69, 52, 70, 71, 77, 86isrhmd 20465 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3420  Vcvv 3464  ifcif 4525  {csn 4625  cmpt 5228   × cxp 5672  ccnv 5673  cima 5677  ccom 5678  wf 6541  cfv 6545  (class class class)co 7415  m cmap 8846  Fincfn 8965  0cc0 11148  cn 12257  0cn0 12517  Basecbs 17207  +gcplusg 17260  .rcmulr 17261  0gc0g 17448   MndHom cmhm 18765   GrpHom cghm 19201  1rcur 20159  Ringcrg 20211   RingHom crh 20446   mPwSer cmps 21896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8848  df-pm 8849  df-ixp 8918  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-fsupp 9398  df-sup 9477  df-oi 9545  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-z 12604  df-dec 12723  df-uz 12868  df-fz 13532  df-fzo 13675  df-seq 14015  df-hash 14342  df-struct 17143  df-sets 17160  df-slot 17178  df-ndx 17190  df-base 17208  df-ress 17237  df-plusg 17273  df-mulr 17274  df-sca 17276  df-vsca 17277  df-ip 17278  df-tset 17279  df-ple 17280  df-ds 17282  df-hom 17284  df-cco 17285  df-0g 17450  df-gsum 17451  df-prds 17456  df-pws 17458  df-mre 17593  df-mrc 17594  df-acs 17596  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18767  df-submnd 18768  df-grp 18925  df-minusg 18926  df-mulg 19057  df-ghm 19202  df-cntz 19306  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-rhm 20449  df-psr 21901
This theorem is referenced by:  rhmpsr1  42242
  Copyright terms: Public domain W3C validator