Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr Structured version   Visualization version   GIF version

Theorem rhmpsr 42507
Description: Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
rhmpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
rhmpsr.b 𝐵 = (Base‘𝑃)
rhmpsr.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr.i (𝜑𝐼𝑉)
rhmpsr.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑃,𝑝   𝑄,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem rhmpsr
Dummy variables 𝑥 𝑦 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpsr.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2740 . 2 (1r𝑃) = (1r𝑃)
3 eqid 2740 . 2 (1r𝑄) = (1r𝑄)
4 eqid 2740 . 2 (.r𝑃) = (.r𝑃)
5 eqid 2740 . 2 (.r𝑄) = (.r𝑄)
6 rhmpsr.p . . 3 𝑃 = (𝐼 mPwSer 𝑅)
7 rhmpsr.i . . 3 (𝜑𝐼𝑉)
8 rhmpsr.h . . . 4 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
9 rhmrcl1 20502 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
108, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
116, 7, 10psrring 22013 . 2 (𝜑𝑃 ∈ Ring)
12 rhmpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
13 rhmrcl2 20503 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
148, 13syl 17 . . 3 (𝜑𝑆 ∈ Ring)
1512, 7, 14psrring 22013 . 2 (𝜑𝑄 ∈ Ring)
16 eqid 2740 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
18 eqid 2740 . . . . . 6 (1r𝑅) = (1r𝑅)
196, 7, 10, 16, 17, 18, 2psr1 22014 . . . . 5 (𝜑 → (1r𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2019coeq2d 5887 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
21 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2740 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2321, 22rhmf 20511 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
248, 23syl 17 . . . . 5 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
2521, 18ringidcl 20289 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2610, 25syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2721, 17ring0cl 20290 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2810, 27syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2926, 28ifcld 4594 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3029adantr 480 . . . . 5 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3124, 30cofmpt 7166 . . . 4 (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
32 fvif 6936 . . . . . 6 (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
33 eqid 2740 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3418, 33rhm1 20515 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
358, 34syl 17 . . . . . . 7 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
36 rhmghm 20510 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
37 eqid 2740 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3817, 37ghmid 19262 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
398, 36, 383syl 18 . . . . . . 7 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
4035, 39ifeq12d 4569 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4132, 40eqtrid 2792 . . . . 5 (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4241mpteq2dv 5268 . . . 4 (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
4320, 31, 423eqtrd 2784 . . 3 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
44 rhmpsr.f . . . 4 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
45 coeq2 5883 . . . 4 (𝑝 = (1r𝑃) → (𝐻𝑝) = (𝐻 ∘ (1r𝑃)))
461, 2ringidcl 20289 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
4711, 46syl 17 . . . 4 (𝜑 → (1r𝑃) ∈ 𝐵)
488, 47coexd 7971 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) ∈ V)
4944, 45, 47, 48fvmptd3 7052 . . 3 (𝜑 → (𝐹‘(1r𝑃)) = (𝐻 ∘ (1r𝑃)))
5012, 7, 14, 16, 37, 33, 3psr1 22014 . . 3 (𝜑 → (1r𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
5143, 49, 503eqtr4d 2790 . 2 (𝜑 → (𝐹‘(1r𝑃)) = (1r𝑄))
52 eqid 2740 . . . 4 (Base‘𝑄) = (Base‘𝑄)
538adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆))
54 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
55 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
566, 12, 1, 52, 4, 5, 53, 54, 55rhmcomulpsr 42506 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
57 coeq2 5883 . . . 4 (𝑝 = (𝑥(.r𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
5811adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
591, 4, 58, 54, 55ringcld 20286 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
6053, 59coexd 7971 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) ∈ V)
6144, 57, 59, 60fvmptd3 7052 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
62 coeq2 5883 . . . . 5 (𝑝 = 𝑥 → (𝐻𝑝) = (𝐻𝑥))
6353, 54coexd 7971 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ V)
6444, 62, 54, 63fvmptd3 7052 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝐻𝑥))
65 coeq2 5883 . . . . 5 (𝑝 = 𝑦 → (𝐻𝑝) = (𝐻𝑦))
6653, 55coexd 7971 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ V)
6744, 65, 55, 66fvmptd3 7052 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝐻𝑦))
6864, 67oveq12d 7466 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r𝑄)(𝐹𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
6956, 61, 683eqtr4d 2790 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = ((𝐹𝑥)(.r𝑄)(𝐹𝑦)))
70 eqid 2740 . 2 (+g𝑃) = (+g𝑃)
71 eqid 2740 . 2 (+g𝑄) = (+g𝑄)
72 ghmmhm 19266 . . . . . 6 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
738, 36, 723syl 18 . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
7473adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆))
75 simpr 484 . . . 4 ((𝜑𝑝𝐵) → 𝑝𝐵)
766, 12, 1, 52, 74, 75mhmcopsr 42504 . . 3 ((𝜑𝑝𝐵) → (𝐻𝑝) ∈ (Base‘𝑄))
7776, 44fmptd 7148 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑄))
7853, 36, 723syl 18 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆))
796, 12, 1, 52, 70, 71, 78, 54, 55mhmcoaddpsr 42505 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
80 coeq2 5883 . . . 4 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8158ringgrpd 20269 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
821, 70, 81, 54, 55grpcld 18987 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
8353, 82coexd 7971 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) ∈ V)
8444, 80, 82, 83fvmptd3 7052 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8564, 67oveq12d 7466 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑄)(𝐹𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
8679, 84, 853eqtr4d 2790 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = ((𝐹𝑥)(+g𝑄)(𝐹𝑦)))
871, 2, 3, 4, 5, 11, 15, 51, 69, 52, 70, 71, 77, 86isrhmd 20514 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ifcif 4548  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  cima 5703  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  0cc0 11184  cn 12293  0cn0 12553  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499   MndHom cmhm 18816   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260   RingHom crh 20495   mPwSer cmps 21947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rhm 20498  df-psr 21952
This theorem is referenced by:  rhmpsr1  42508
  Copyright terms: Public domain W3C validator