Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modabsdifz Structured version   Visualization version   GIF version

Theorem modabsdifz 40816
Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
modabsdifz ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)

Proof of Theorem modabsdifz
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
2 simp2 1136 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
32recnd 11013 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
4 simp3 1137 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
53, 4absrpcld 15170 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
6 moddifz 13613 . . 3 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
71, 5, 6syl2anc 584 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
8 absidm 15045 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
93, 8syl 17 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘(abs‘𝑀)) = (abs‘𝑀))
109oveq2d 7283 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
111, 5modcld 13605 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
121, 11resubcld 11413 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℝ)
1312recnd 11013 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
143abscld 15158 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ)
1514recnd 11013 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
165rpne0d 12787 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
1713, 15, 16absdivd 15177 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))))
1813, 3, 4absdivd 15177 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
1910, 17, 183eqtr4d 2788 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)))
2019eleq1d 2823 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2112, 14, 16redivcld 11813 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ)
22 absz 15033 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2321, 22syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2412, 2, 4redivcld 11813 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ)
25 absz 15033 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2624, 25syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2720, 23, 263bitr4d 311 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ))
287, 27mpbid 231 1 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6426  (class class class)co 7267  cc 10879  cr 10880  0cc0 10881  cmin 11215   / cdiv 11642  cz 12329  +crp 12740   mod cmo 13599  abscabs 14955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-sup 9188  df-inf 9189  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-fl 13522  df-mod 13600  df-seq 13732  df-exp 13793  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957
This theorem is referenced by:  jm2.19  40823
  Copyright terms: Public domain W3C validator