Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modabsdifz Structured version   Visualization version   GIF version

Theorem modabsdifz 42982
Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
modabsdifz ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)

Proof of Theorem modabsdifz
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
2 simp2 1137 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
32recnd 11209 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
4 simp3 1138 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
53, 4absrpcld 15424 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
6 moddifz 13852 . . 3 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
71, 5, 6syl2anc 584 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
8 absidm 15297 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
93, 8syl 17 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘(abs‘𝑀)) = (abs‘𝑀))
109oveq2d 7406 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
111, 5modcld 13844 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
121, 11resubcld 11613 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℝ)
1312recnd 11209 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
143abscld 15412 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ)
1514recnd 11209 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
165rpne0d 13007 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
1713, 15, 16absdivd 15431 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))))
1813, 3, 4absdivd 15431 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
1910, 17, 183eqtr4d 2775 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)))
2019eleq1d 2814 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2112, 14, 16redivcld 12017 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ)
22 absz 15284 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2321, 22syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2412, 2, 4redivcld 12017 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ)
25 absz 15284 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2624, 25syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2720, 23, 263bitr4d 311 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ))
287, 27mpbid 232 1 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  cmin 11412   / cdiv 11842  cz 12536  +crp 12958   mod cmo 13838  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  jm2.19  42989
  Copyright terms: Public domain W3C validator