Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modabsdifz Structured version   Visualization version   GIF version

Theorem modabsdifz 41725
Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
modabsdifz ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)

Proof of Theorem modabsdifz
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
2 simp2 1138 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
32recnd 11242 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
4 simp3 1139 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
53, 4absrpcld 15395 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
6 moddifz 13848 . . 3 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
71, 5, 6syl2anc 585 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
8 absidm 15270 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
93, 8syl 17 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘(abs‘𝑀)) = (abs‘𝑀))
109oveq2d 7425 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
111, 5modcld 13840 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
121, 11resubcld 11642 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℝ)
1312recnd 11242 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
143abscld 15383 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ)
1514recnd 11242 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
165rpne0d 13021 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
1713, 15, 16absdivd 15402 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))))
1813, 3, 4absdivd 15402 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
1910, 17, 183eqtr4d 2783 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)))
2019eleq1d 2819 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2112, 14, 16redivcld 12042 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ)
22 absz 15258 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2321, 22syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2412, 2, 4redivcld 12042 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ)
25 absz 15258 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2624, 25syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2720, 23, 263bitr4d 311 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ))
287, 27mpbid 231 1 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  cmin 11444   / cdiv 11871  cz 12558  +crp 12974   mod cmo 13834  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  jm2.19  41732
  Copyright terms: Public domain W3C validator