Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modabsdifz Structured version   Visualization version   GIF version

Theorem modabsdifz 42943
Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
modabsdifz ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)

Proof of Theorem modabsdifz
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
2 simp2 1137 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
32recnd 11318 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
4 simp3 1138 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
53, 4absrpcld 15497 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
6 moddifz 13934 . . 3 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
71, 5, 6syl2anc 583 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
8 absidm 15372 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
93, 8syl 17 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘(abs‘𝑀)) = (abs‘𝑀))
109oveq2d 7464 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
111, 5modcld 13926 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
121, 11resubcld 11718 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℝ)
1312recnd 11318 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
143abscld 15485 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ)
1514recnd 11318 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
165rpne0d 13104 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
1713, 15, 16absdivd 15504 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))))
1813, 3, 4absdivd 15504 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
1910, 17, 183eqtr4d 2790 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)))
2019eleq1d 2829 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2112, 14, 16redivcld 12122 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ)
22 absz 15360 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2321, 22syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2412, 2, 4redivcld 12122 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ)
25 absz 15360 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2624, 25syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2720, 23, 263bitr4d 311 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ))
287, 27mpbid 232 1 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  cmin 11520   / cdiv 11947  cz 12639  +crp 13057   mod cmo 13920  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  jm2.19  42950
  Copyright terms: Public domain W3C validator