Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modabsdifz Structured version   Visualization version   GIF version

Theorem modabsdifz 42975
Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
modabsdifz ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)

Proof of Theorem modabsdifz
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
2 simp2 1136 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
32recnd 11287 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
4 simp3 1137 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
53, 4absrpcld 15484 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
6 moddifz 13920 . . 3 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
71, 5, 6syl2anc 584 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ)
8 absidm 15359 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
93, 8syl 17 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘(abs‘𝑀)) = (abs‘𝑀))
109oveq2d 7447 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
111, 5modcld 13912 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
121, 11resubcld 11689 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℝ)
1312recnd 11287 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
143abscld 15472 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ)
1514recnd 11287 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
165rpne0d 13080 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
1713, 15, 16absdivd 15491 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘(abs‘𝑀))))
1813, 3, 4absdivd 15491 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) = ((abs‘(𝑁 − (𝑁 mod (abs‘𝑀)))) / (abs‘𝑀)))
1910, 17, 183eqtr4d 2785 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) = (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)))
2019eleq1d 2824 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2112, 14, 16redivcld 12093 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ)
22 absz 15347 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2321, 22syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀))) ∈ ℤ))
2412, 2, 4redivcld 12093 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ)
25 absz 15347 . . . 4 (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℝ → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2624, 25syl 17 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ ↔ (abs‘((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀)) ∈ ℤ))
2720, 23, 263bitr4d 311 . 2 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / (abs‘𝑀)) ∈ ℤ ↔ ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ))
287, 27mpbid 232 1 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  cmin 11490   / cdiv 11918  cz 12611  +crp 13032   mod cmo 13906  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  jm2.19  42982
  Copyright terms: Public domain W3C validator