MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absdivd Structured version   Visualization version   GIF version

Theorem absdivd 14649
Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
abssubd.2 (𝜑𝐵 ∈ ℂ)
absdivd.2 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
absdivd (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Proof of Theorem absdivd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abssubd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 absdivd.2 . 2 (𝜑𝐵 ≠ 0)
4 absdiv 14489 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
51, 2, 3, 4syl3anc 1364 1 (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  wne 2984  cfv 6225  (class class class)co 7016  cc 10381  0cc0 10383   / cdiv 11145  abscabs 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429
This theorem is referenced by:  reccn2  14787  rlimno1  14844  o1fsum  15001  divrcnv  15040  georeclim  15061  eftabs  15262  efcllem  15264  efaddlem  15279  mul4sqlem  16118  gzrngunit  20293  pjthlem1  23723  iblabsr  24113  iblmulc2  24114  c1liplem1  24276  ftc1lem4  24319  ulmdvlem1  24671  dvradcnv  24692  eff1olem  24813  logcnlem4  24909  lawcoslem1  25074  isosctrlem3  25079  cxploglim2  25238  fsumharmonic  25271  lgamgulmlem2  25289  lgamgulmlem5  25292  lgamcvg2  25314  logfacrlim  25482  2sqlem3  25678  dchrmusum2  25752  dchrvmasumlem3  25757  dchrisum0lem1  25774  dchrisum0lem2a  25775  mudivsum  25788  mulogsumlem  25789  2vmadivsumlem  25798  selberg3lem1  25815  selberg3lem2  25816  selberg4lem1  25818  pntrlog2bndlem1  25835  pntrlog2bndlem3  25837  pntrlog2bndlem5  25839  pntrlog2bndlem6  25841  pntpbnd1a  25843  pntpbnd2  25845  pntibndlem2  25849  pntlemo  25865  pjhthlem1  28859  qqhnm  30848  unbdqndv2lem1  33457  unbdqndv2lem2  33458  knoppndvlem10  33469  knoppndvlem14  33473  iblmulc2nc  34488  ftc1cnnclem  34496  pellexlem2  38912  pellexlem6  38916  modabsdifz  39068  cvgdvgrat  40183  binomcxplemnotnn0  40226  0ellimcdiv  41472  dvdivbd  41749  fourierdlem30  41964  fourierdlem39  41973  etransclem23  42084
  Copyright terms: Public domain W3C validator