| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absdivd | Structured version Visualization version GIF version | ||
| Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| absdivd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| absdivd | ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | absdivd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | absdiv 15261 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 / cdiv 11835 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: reccn2 15563 rlimno1 15620 o1fsum 15779 divrcnv 15818 georeclim 15838 eftabs 16041 efcllem 16043 efaddlem 16059 mul4sqlem 16924 gzrngunit 21350 pjthlem1 25337 iblabsr 25731 iblmulc2 25732 c1liplem1 25901 ftc1lem4 25946 ulmdvlem1 26309 dvradcnv 26330 eff1olem 26457 logcnlem4 26554 lawcoslem1 26725 isosctrlem3 26730 cxploglim2 26889 fsumharmonic 26922 lgamgulmlem2 26940 lgamgulmlem5 26943 lgamcvg2 26965 logfacrlim 27135 2sqlem3 27331 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0lem1 27427 dchrisum0lem2a 27428 mudivsum 27441 mulogsumlem 27442 2vmadivsumlem 27451 selberg3lem1 27468 selberg3lem2 27469 selberg4lem1 27471 pntrlog2bndlem1 27488 pntrlog2bndlem3 27490 pntrlog2bndlem5 27492 pntrlog2bndlem6 27494 pntpbnd1a 27496 pntpbnd2 27498 pntibndlem2 27502 pntlemo 27518 pjhthlem1 31320 constrdircl 33755 constrinvcl 33763 qqhnm 33980 unbdqndv2lem1 36497 unbdqndv2lem2 36498 knoppndvlem10 36509 knoppndvlem14 36513 iblmulc2nc 37679 ftc1cnnclem 37685 pellexlem2 42818 pellexlem6 42822 modabsdifz 42975 cvgdvgrat 44302 binomcxplemnotnn0 44345 0ellimcdiv 45647 dvdivbd 45921 fourierdlem30 46135 fourierdlem39 46144 etransclem23 46255 |
| Copyright terms: Public domain | W3C validator |