Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absdivd | Structured version Visualization version GIF version |
Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
absdivd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
absdivd | ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | absdivd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | absdiv 15007 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 / cdiv 11632 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: reccn2 15306 rlimno1 15365 o1fsum 15525 divrcnv 15564 georeclim 15584 eftabs 15785 efcllem 15787 efaddlem 15802 mul4sqlem 16654 gzrngunit 20664 pjthlem1 24601 iblabsr 24994 iblmulc2 24995 c1liplem1 25160 ftc1lem4 25203 ulmdvlem1 25559 dvradcnv 25580 eff1olem 25704 logcnlem4 25800 lawcoslem1 25965 isosctrlem3 25970 cxploglim2 26128 fsumharmonic 26161 lgamgulmlem2 26179 lgamgulmlem5 26182 lgamcvg2 26204 logfacrlim 26372 2sqlem3 26568 dchrmusum2 26642 dchrvmasumlem3 26647 dchrisum0lem1 26664 dchrisum0lem2a 26665 mudivsum 26678 mulogsumlem 26679 2vmadivsumlem 26688 selberg3lem1 26705 selberg3lem2 26706 selberg4lem1 26708 pntrlog2bndlem1 26725 pntrlog2bndlem3 26727 pntrlog2bndlem5 26729 pntrlog2bndlem6 26731 pntpbnd1a 26733 pntpbnd2 26735 pntibndlem2 26739 pntlemo 26755 pjhthlem1 29753 qqhnm 31940 unbdqndv2lem1 34689 unbdqndv2lem2 34690 knoppndvlem10 34701 knoppndvlem14 34705 iblmulc2nc 35842 ftc1cnnclem 35848 pellexlem2 40652 pellexlem6 40656 modabsdifz 40808 cvgdvgrat 41931 binomcxplemnotnn0 41974 0ellimcdiv 43190 dvdivbd 43464 fourierdlem30 43678 fourierdlem39 43687 etransclem23 43798 |
Copyright terms: Public domain | W3C validator |