MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absdivd Structured version   Visualization version   GIF version

Theorem absdivd 15442
Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
abssubd.2 (𝜑𝐵 ∈ ℂ)
absdivd.2 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
absdivd (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Proof of Theorem absdivd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abssubd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 absdivd.2 . 2 (𝜑𝐵 ≠ 0)
4 absdiv 15282 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2937  cfv 6553  (class class class)co 7426  cc 11144  0cc0 11146   / cdiv 11909  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223
This theorem is referenced by:  reccn2  15581  rlimno1  15640  o1fsum  15799  divrcnv  15838  georeclim  15858  eftabs  16059  efcllem  16061  efaddlem  16077  mul4sqlem  16929  gzrngunit  21373  pjthlem1  25385  iblabsr  25779  iblmulc2  25780  c1liplem1  25949  ftc1lem4  25994  ulmdvlem1  26356  dvradcnv  26377  eff1olem  26502  logcnlem4  26599  lawcoslem1  26767  isosctrlem3  26772  cxploglim2  26931  fsumharmonic  26964  lgamgulmlem2  26982  lgamgulmlem5  26985  lgamcvg2  27007  logfacrlim  27177  2sqlem3  27373  dchrmusum2  27447  dchrvmasumlem3  27452  dchrisum0lem1  27469  dchrisum0lem2a  27470  mudivsum  27483  mulogsumlem  27484  2vmadivsumlem  27493  selberg3lem1  27510  selberg3lem2  27511  selberg4lem1  27513  pntrlog2bndlem1  27530  pntrlog2bndlem3  27532  pntrlog2bndlem5  27534  pntrlog2bndlem6  27536  pntpbnd1a  27538  pntpbnd2  27540  pntibndlem2  27544  pntlemo  27560  pjhthlem1  31221  qqhnm  33624  unbdqndv2lem1  36017  unbdqndv2lem2  36018  knoppndvlem10  36029  knoppndvlem14  36033  iblmulc2nc  37191  ftc1cnnclem  37197  pellexlem2  42281  pellexlem6  42285  modabsdifz  42438  cvgdvgrat  43781  binomcxplemnotnn0  43824  0ellimcdiv  45066  dvdivbd  45340  fourierdlem30  45554  fourierdlem39  45563  etransclem23  45674
  Copyright terms: Public domain W3C validator