| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absdivd | Structured version Visualization version GIF version | ||
| Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| absdivd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| absdivd | ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | absdivd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | absdiv 15202 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 / cdiv 11777 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: reccn2 15504 rlimno1 15561 o1fsum 15720 divrcnv 15759 georeclim 15779 eftabs 15982 efcllem 15984 efaddlem 16000 mul4sqlem 16865 gzrngunit 21340 pjthlem1 25335 iblabsr 25729 iblmulc2 25730 c1liplem1 25899 ftc1lem4 25944 ulmdvlem1 26307 dvradcnv 26328 eff1olem 26455 logcnlem4 26552 lawcoslem1 26723 isosctrlem3 26728 cxploglim2 26887 fsumharmonic 26920 lgamgulmlem2 26938 lgamgulmlem5 26941 lgamcvg2 26963 logfacrlim 27133 2sqlem3 27329 dchrmusum2 27403 dchrvmasumlem3 27408 dchrisum0lem1 27425 dchrisum0lem2a 27426 mudivsum 27439 mulogsumlem 27440 2vmadivsumlem 27449 selberg3lem1 27466 selberg3lem2 27467 selberg4lem1 27469 pntrlog2bndlem1 27486 pntrlog2bndlem3 27488 pntrlog2bndlem5 27490 pntrlog2bndlem6 27492 pntpbnd1a 27494 pntpbnd2 27496 pntibndlem2 27500 pntlemo 27516 pjhthlem1 31335 constrdircl 33732 constrinvcl 33740 qqhnm 33957 unbdqndv2lem1 36483 unbdqndv2lem2 36484 knoppndvlem10 36495 knoppndvlem14 36499 iblmulc2nc 37665 ftc1cnnclem 37671 pellexlem2 42803 pellexlem6 42807 modabsdifz 42959 cvgdvgrat 44286 binomcxplemnotnn0 44329 0ellimcdiv 45630 dvdivbd 45904 fourierdlem30 46118 fourierdlem39 46127 etransclem23 46238 |
| Copyright terms: Public domain | W3C validator |