| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absdivd | Structured version Visualization version GIF version | ||
| Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| absdivd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| absdivd | ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | absdivd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | absdiv 15317 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 0cc0 11138 / cdiv 11903 abscabs 15256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 |
| This theorem is referenced by: reccn2 15616 rlimno1 15673 o1fsum 15832 divrcnv 15871 georeclim 15891 eftabs 16094 efcllem 16096 efaddlem 16112 mul4sqlem 16974 gzrngunit 21418 pjthlem1 25426 iblabsr 25820 iblmulc2 25821 c1liplem1 25990 ftc1lem4 26035 ulmdvlem1 26398 dvradcnv 26419 eff1olem 26545 logcnlem4 26642 lawcoslem1 26813 isosctrlem3 26818 cxploglim2 26977 fsumharmonic 27010 lgamgulmlem2 27028 lgamgulmlem5 27031 lgamcvg2 27053 logfacrlim 27223 2sqlem3 27419 dchrmusum2 27493 dchrvmasumlem3 27498 dchrisum0lem1 27515 dchrisum0lem2a 27516 mudivsum 27529 mulogsumlem 27530 2vmadivsumlem 27539 selberg3lem1 27556 selberg3lem2 27557 selberg4lem1 27559 pntrlog2bndlem1 27576 pntrlog2bndlem3 27578 pntrlog2bndlem5 27580 pntrlog2bndlem6 27582 pntpbnd1a 27584 pntpbnd2 27586 pntibndlem2 27590 pntlemo 27606 pjhthlem1 31357 qqhnm 33932 unbdqndv2lem1 36451 unbdqndv2lem2 36452 knoppndvlem10 36463 knoppndvlem14 36467 iblmulc2nc 37633 ftc1cnnclem 37639 pellexlem2 42786 pellexlem6 42790 modabsdifz 42943 cvgdvgrat 44277 binomcxplemnotnn0 44320 0ellimcdiv 45609 dvdivbd 45883 fourierdlem30 46097 fourierdlem39 46106 etransclem23 46217 |
| Copyright terms: Public domain | W3C validator |