MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absdivd Structured version   Visualization version   GIF version

Theorem absdivd 15472
Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
abssubd.2 (𝜑𝐵 ∈ ℂ)
absdivd.2 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
absdivd (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Proof of Theorem absdivd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abssubd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 absdivd.2 . 2 (𝜑𝐵 ≠ 0)
4 absdiv 15312 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127   / cdiv 11892  abscabs 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253
This theorem is referenced by:  reccn2  15611  rlimno1  15668  o1fsum  15827  divrcnv  15866  georeclim  15886  eftabs  16089  efcllem  16091  efaddlem  16107  mul4sqlem  16971  gzrngunit  21399  pjthlem1  25387  iblabsr  25781  iblmulc2  25782  c1liplem1  25951  ftc1lem4  25996  ulmdvlem1  26359  dvradcnv  26380  eff1olem  26507  logcnlem4  26604  lawcoslem1  26775  isosctrlem3  26780  cxploglim2  26939  fsumharmonic  26972  lgamgulmlem2  26990  lgamgulmlem5  26993  lgamcvg2  27015  logfacrlim  27185  2sqlem3  27381  dchrmusum2  27455  dchrvmasumlem3  27460  dchrisum0lem1  27477  dchrisum0lem2a  27478  mudivsum  27491  mulogsumlem  27492  2vmadivsumlem  27501  selberg3lem1  27518  selberg3lem2  27519  selberg4lem1  27521  pntrlog2bndlem1  27538  pntrlog2bndlem3  27540  pntrlog2bndlem5  27542  pntrlog2bndlem6  27544  pntpbnd1a  27546  pntpbnd2  27548  pntibndlem2  27552  pntlemo  27568  pjhthlem1  31318  constrdircl  33745  constrinvcl  33753  qqhnm  33967  unbdqndv2lem1  36473  unbdqndv2lem2  36474  knoppndvlem10  36485  knoppndvlem14  36489  iblmulc2nc  37655  ftc1cnnclem  37661  pellexlem2  42800  pellexlem6  42804  modabsdifz  42957  cvgdvgrat  44285  binomcxplemnotnn0  44328  0ellimcdiv  45626  dvdivbd  45900  fourierdlem30  46114  fourierdlem39  46123  etransclem23  46234
  Copyright terms: Public domain W3C validator