MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   GIF version

Theorem asinlem2 25455
Description: The argument to the logarithm in df-asin 25451 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 10585 . . . . 5 i ∈ ℂ
2 mulcl 10610 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 689 . . . 4 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
5 sqcl 13480 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10874 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 590 . . . . 5 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14789 . . . 4 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcomd 10831 . . 3 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
10 mulneg2 11066 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
111, 10mpan 689 . . . . 5 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
12 sqneg 13478 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
1312oveq2d 7151 . . . . . 6 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
1413fveq2d 6649 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
1511, 14oveq12d 7153 . . . 4 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
163negcld 10973 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
1716, 8addcomd 10831 . . . 4 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
188, 3negsubd 10992 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
1915, 17, 183eqtrd 2837 . . 3 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
209, 19oveq12d 7153 . 2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
217sqsqrtd 14791 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
22 sqmul 13481 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
231, 22mpan 689 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
24 i2 13561 . . . . . . 7 (i↑2) = -1
2524oveq1i 7145 . . . . . 6 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
265mulm1d 11081 . . . . . 6 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2725, 26syl5eq 2845 . . . . 5 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2823, 27eqtrd 2833 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
2921, 28oveq12d 7153 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = ((1 − (𝐴↑2)) − -(𝐴↑2)))
30 subsq 13568 . . . 4 (((√‘(1 − (𝐴↑2))) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
318, 3, 30syl2anc 587 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
327, 5subnegd 10993 . . 3 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) − -(𝐴↑2)) = ((1 − (𝐴↑2)) + (𝐴↑2)))
3329, 31, 323eqtr3d 2841 . 2 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((1 − (𝐴↑2)) + (𝐴↑2)))
34 npcan 10884 . . 3 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
354, 5, 34sylancr 590 . 2 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
3620, 33, 353eqtrd 2837 1 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  2c2 11680  cexp 13425  csqrt 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  asinlem3  25457  asinneg  25472
  Copyright terms: Public domain W3C validator