MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   GIF version

Theorem asinlem2 26846
Description: The argument to the logarithm in df-asin 26842 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 11199 . . . . 5 i ∈ ℂ
2 mulcl 11224 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . . 4 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 11198 . . . . . 6 1 ∈ ℂ
5 sqcl 14118 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11491 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 585 . . . . 5 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15420 . . . 4 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcomd 11448 . . 3 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
10 mulneg2 11683 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
111, 10mpan 688 . . . . 5 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
12 sqneg 14116 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
1312oveq2d 7435 . . . . . 6 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
1413fveq2d 6900 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
1511, 14oveq12d 7437 . . . 4 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
163negcld 11590 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
1716, 8addcomd 11448 . . . 4 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
188, 3negsubd 11609 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
1915, 17, 183eqtrd 2769 . . 3 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
209, 19oveq12d 7437 . 2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
217sqsqrtd 15422 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
22 sqmul 14119 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
231, 22mpan 688 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
24 i2 14201 . . . . . . 7 (i↑2) = -1
2524oveq1i 7429 . . . . . 6 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
265mulm1d 11698 . . . . . 6 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2725, 26eqtrid 2777 . . . . 5 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2823, 27eqtrd 2765 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
2921, 28oveq12d 7437 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = ((1 − (𝐴↑2)) − -(𝐴↑2)))
30 subsq 14209 . . . 4 (((√‘(1 − (𝐴↑2))) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
318, 3, 30syl2anc 582 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
327, 5subnegd 11610 . . 3 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) − -(𝐴↑2)) = ((1 − (𝐴↑2)) + (𝐴↑2)))
3329, 31, 323eqtr3d 2773 . 2 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((1 − (𝐴↑2)) + (𝐴↑2)))
34 npcan 11501 . . 3 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
354, 5, 34sylancr 585 . 2 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
3620, 33, 353eqtrd 2769 1 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  cc 11138  1c1 11141  ici 11142   + caddc 11143   · cmul 11145  cmin 11476  -cneg 11477  2c2 12300  cexp 14062  csqrt 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219
This theorem is referenced by:  asinlem3  26848  asinneg  26863
  Copyright terms: Public domain W3C validator