MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   GIF version

Theorem asinlem2 24887
Description: The argument to the logarithm in df-asin 24883 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 10248 . . . . 5 i ∈ ℂ
2 mulcl 10273 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 681 . . . 4 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10247 . . . . . 6 1 ∈ ℂ
5 sqcl 13132 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10534 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 581 . . . . 5 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14461 . . . 4 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcomd 10492 . . 3 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
10 mulneg2 10721 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
111, 10mpan 681 . . . . 5 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
12 sqneg 13130 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
1312oveq2d 6858 . . . . . 6 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
1413fveq2d 6379 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
1511, 14oveq12d 6860 . . . 4 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
163negcld 10633 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
1716, 8addcomd 10492 . . . 4 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
188, 3negsubd 10652 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
1915, 17, 183eqtrd 2803 . . 3 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
209, 19oveq12d 6860 . 2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
217sqsqrtd 14463 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
22 sqmul 13133 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
231, 22mpan 681 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
24 i2 13172 . . . . . . 7 (i↑2) = -1
2524oveq1i 6852 . . . . . 6 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
265mulm1d 10736 . . . . . 6 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2725, 26syl5eq 2811 . . . . 5 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2823, 27eqtrd 2799 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
2921, 28oveq12d 6860 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = ((1 − (𝐴↑2)) − -(𝐴↑2)))
30 subsq 13179 . . . 4 (((√‘(1 − (𝐴↑2))) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
318, 3, 30syl2anc 579 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
327, 5subnegd 10653 . . 3 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) − -(𝐴↑2)) = ((1 − (𝐴↑2)) + (𝐴↑2)))
3329, 31, 323eqtr3d 2807 . 2 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((1 − (𝐴↑2)) + (𝐴↑2)))
34 npcan 10544 . . 3 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
354, 5, 34sylancr 581 . 2 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
3620, 33, 353eqtrd 2803 1 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  cc 10187  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cmin 10520  -cneg 10521  2c2 11327  cexp 13067  csqrt 14258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261
This theorem is referenced by:  asinlem3  24889  asinneg  24904
  Copyright terms: Public domain W3C validator