MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   GIF version

Theorem asinlem2 26256
Description: The argument to the logarithm in df-asin 26252 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 11119 . . . . 5 i ∈ ℂ
2 mulcl 11144 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . . 4 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 11118 . . . . . 6 1 ∈ ℂ
5 sqcl 14033 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11409 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15334 . . . 4 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcomd 11366 . . 3 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
10 mulneg2 11601 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
111, 10mpan 688 . . . . 5 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
12 sqneg 14031 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
1312oveq2d 7378 . . . . . 6 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
1413fveq2d 6851 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
1511, 14oveq12d 7380 . . . 4 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
163negcld 11508 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
1716, 8addcomd 11366 . . . 4 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
188, 3negsubd 11527 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
1915, 17, 183eqtrd 2775 . . 3 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
209, 19oveq12d 7380 . 2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
217sqsqrtd 15336 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
22 sqmul 14034 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
231, 22mpan 688 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
24 i2 14116 . . . . . . 7 (i↑2) = -1
2524oveq1i 7372 . . . . . 6 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
265mulm1d 11616 . . . . . 6 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2725, 26eqtrid 2783 . . . . 5 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2823, 27eqtrd 2771 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
2921, 28oveq12d 7380 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = ((1 − (𝐴↑2)) − -(𝐴↑2)))
30 subsq 14124 . . . 4 (((√‘(1 − (𝐴↑2))) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
318, 3, 30syl2anc 584 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
327, 5subnegd 11528 . . 3 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) − -(𝐴↑2)) = ((1 − (𝐴↑2)) + (𝐴↑2)))
3329, 31, 323eqtr3d 2779 . 2 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((1 − (𝐴↑2)) + (𝐴↑2)))
34 npcan 11419 . . 3 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
354, 5, 34sylancr 587 . 2 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
3620, 33, 353eqtrd 2775 1 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6501  (class class class)co 7362  cc 11058  1c1 11061  ici 11062   + caddc 11063   · cmul 11065  cmin 11394  -cneg 11395  2c2 12217  cexp 13977  csqrt 15130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9387  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133
This theorem is referenced by:  asinlem3  26258  asinneg  26273
  Copyright terms: Public domain W3C validator