MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem2 Structured version   Visualization version   GIF version

Theorem asinlem2 25441
Description: The argument to the logarithm in df-asin 25437 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)

Proof of Theorem asinlem2
StepHypRef Expression
1 ax-icn 10590 . . . . 5 i ∈ ℂ
2 mulcl 10615 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . . 4 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10589 . . . . . 6 1 ∈ ℂ
5 sqcl 13478 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10879 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 589 . . . . 5 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14791 . . . 4 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcomd 10836 . . 3 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
10 mulneg2 11071 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
111, 10mpan 688 . . . . 5 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
12 sqneg 13476 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
1312oveq2d 7166 . . . . . 6 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
1413fveq2d 6668 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
1511, 14oveq12d 7168 . . . 4 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
163negcld 10978 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
1716, 8addcomd 10836 . . . 4 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
188, 3negsubd 10997 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
1915, 17, 183eqtrd 2860 . . 3 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
209, 19oveq12d 7168 . 2 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
217sqsqrtd 14793 . . . 4 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
22 sqmul 13479 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
231, 22mpan 688 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
24 i2 13559 . . . . . . 7 (i↑2) = -1
2524oveq1i 7160 . . . . . 6 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
265mulm1d 11086 . . . . . 6 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2725, 26syl5eq 2868 . . . . 5 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2823, 27eqtrd 2856 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
2921, 28oveq12d 7168 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = ((1 − (𝐴↑2)) − -(𝐴↑2)))
30 subsq 13566 . . . 4 (((√‘(1 − (𝐴↑2))) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
318, 3, 30syl2anc 586 . . 3 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2)))↑2) − ((i · 𝐴)↑2)) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
327, 5subnegd 10998 . . 3 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) − -(𝐴↑2)) = ((1 − (𝐴↑2)) + (𝐴↑2)))
3329, 31, 323eqtr3d 2864 . 2 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) · ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((1 − (𝐴↑2)) + (𝐴↑2)))
34 npcan 10889 . . 3 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
354, 5, 34sylancr 589 . 2 (𝐴 ∈ ℂ → ((1 − (𝐴↑2)) + (𝐴↑2)) = 1)
3620, 33, 353eqtrd 2860 1 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  cc 10529  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865  2c2 11686  cexp 13423  csqrt 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by:  asinlem3  25443  asinneg  25458
  Copyright terms: Public domain W3C validator