MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmival Structured version   Visualization version   GIF version

Theorem efmival 15343
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
efmival (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))

Proof of Theorem efmival
StepHypRef Expression
1 ax-icn 10449 . . . 4 i ∈ ℂ
2 mulneg12 10932 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
31, 2mpan 686 . . 3 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
43fveq2d 6549 . 2 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
5 negcl 10739 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
6 efival 15342 . . . 4 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
75, 6syl 17 . . 3 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
8 cosneg 15337 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
9 sinneg 15336 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
109oveq2d 7039 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
11 sincl 15316 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
12 mulneg2 10931 . . . . . . 7 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
131, 11, 12sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
1410, 13eqtrd 2833 . . . . 5 (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
158, 14oveq12d 7041 . . . 4 (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
16 coscl 15317 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
17 mulcl 10474 . . . . . 6 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
181, 11, 17sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ)
1916, 18negsubd 10857 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
2015, 19eqtrd 2833 . . 3 (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
217, 20eqtrd 2833 . 2 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
224, 21eqtrd 2833 1 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  cfv 6232  (class class class)co 7023  cc 10388  ici 10392   + caddc 10393   · cmul 10395  cmin 10723  -cneg 10724  expce 15252  sincsin 15254  cosccos 15255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-ico 12598  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-fac 13488  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261
This theorem is referenced by:  sinadd  15354  cosadd  15355
  Copyright terms: Public domain W3C validator