Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinsub Structured version   Visualization version   GIF version

Theorem sinsub 15516
 Description: Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
sinsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))

Proof of Theorem sinsub
StepHypRef Expression
1 negcl 10878 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 sinadd 15512 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (sin‘(𝐴 + -𝐵)) = (((sin‘𝐴) · (cos‘-𝐵)) + ((cos‘𝐴) · (sin‘-𝐵))))
31, 2sylan2 595 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + -𝐵)) = (((sin‘𝐴) · (cos‘-𝐵)) + ((cos‘𝐴) · (sin‘-𝐵))))
4 negsub 10926 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54fveq2d 6650 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + -𝐵)) = (sin‘(𝐴𝐵)))
6 cosneg 15495 . . . . . 6 (𝐵 ∈ ℂ → (cos‘-𝐵) = (cos‘𝐵))
76adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-𝐵) = (cos‘𝐵))
87oveq2d 7152 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘-𝐵)) = ((sin‘𝐴) · (cos‘𝐵)))
9 sinneg 15494 . . . . . . 7 (𝐵 ∈ ℂ → (sin‘-𝐵) = -(sin‘𝐵))
109adantl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘-𝐵) = -(sin‘𝐵))
1110oveq2d 7152 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘-𝐵)) = ((cos‘𝐴) · -(sin‘𝐵)))
12 coscl 15475 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
13 sincl 15474 . . . . . 6 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
14 mulneg2 11069 . . . . . 6 (((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((cos‘𝐴) · -(sin‘𝐵)) = -((cos‘𝐴) · (sin‘𝐵)))
1512, 13, 14syl2an 598 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · -(sin‘𝐵)) = -((cos‘𝐴) · (sin‘𝐵)))
1611, 15eqtrd 2833 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘-𝐵)) = -((cos‘𝐴) · (sin‘𝐵)))
178, 16oveq12d 7154 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘𝐴) · (cos‘-𝐵)) + ((cos‘𝐴) · (sin‘-𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + -((cos‘𝐴) · (sin‘𝐵))))
18 sincl 15474 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
19 coscl 15475 . . . . 5 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
20 mulcl 10613 . . . . 5 (((sin‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) ∈ ℂ)
2118, 19, 20syl2an 598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) ∈ ℂ)
22 mulcl 10613 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((cos‘𝐴) · (sin‘𝐵)) ∈ ℂ)
2312, 13, 22syl2an 598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘𝐵)) ∈ ℂ)
2421, 23negsubd 10995 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘𝐴) · (cos‘𝐵)) + -((cos‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))
2517, 24eqtrd 2833 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘𝐴) · (cos‘-𝐵)) + ((cos‘𝐴) · (sin‘-𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))
263, 5, 253eqtr3d 2841 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  ℂcc 10527   + caddc 10532   · cmul 10534   − cmin 10862  -cneg 10863  sincsin 15412  cosccos 15413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-ico 12735  df-fz 12889  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419 This theorem is referenced by:  addsin  15518  subsin  15519  pilem2  25057  sinmpi  25090  sinhalfpim  25096  sinmulcos  42550
 Copyright terms: Public domain W3C validator