Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem1 Structured version   Visualization version   GIF version

Theorem pellexlem1 42816
Description: Lemma for pellex 42822. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)

Proof of Theorem pellexlem1
StepHypRef Expression
1 nncn 12271 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
213ad2ant2 1133 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
32sqcld 14180 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
4 nncn 12271 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
543ad2ant1 1132 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐷 ∈ ℂ)
6 nncn 12271 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
763ad2ant3 1134 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
87sqcld 14180 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
95, 8mulcld 11278 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐷 · (𝐵↑2)) ∈ ℂ)
103, 9subeq0ad 11627 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
11 nnne0 12297 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
12113ad2ant3 1134 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
13 sqne0 14159 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
147, 13syl 17 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1512, 14mpbird 257 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ≠ 0)
163, 5, 8, 15divmul3d 12074 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
17 sqdiv 14157 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
1817fveq2d 6910 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
192, 7, 12, 18syl3anc 1370 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
20 nnre 12270 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21203ad2ant2 1133 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
22 nnre 12270 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
23223ad2ant3 1134 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
2421, 23, 12redivcld 12092 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
25 nnnn0 12530 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2625nn0ge0d 12587 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
27263ad2ant2 1133 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
28 nngt0 12294 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
29283ad2ant3 1134 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
30 divge0 12134 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
3121, 27, 23, 29, 30syl22anc 839 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 / 𝐵))
3224, 31sqrtsqd 15454 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (𝐴 / 𝐵))
3319, 32eqtr3d 2776 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
34 nnq 13001 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℚ)
35343ad2ant2 1133 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
36 nnq 13001 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℚ)
37363ad2ant3 1134 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
38 qdivcl 13009 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
3935, 37, 12, 38syl3anc 1370 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
4033, 39eqeltrd 2838 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ)
41 fveq2 6906 . . . . . . 7 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘((𝐴↑2) / (𝐵↑2))) = (√‘𝐷))
4241eleq1d 2823 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → ((√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
4340, 42syl5ibcom 245 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘𝐷) ∈ ℚ))
4416, 43sylbird 260 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) = (𝐷 · (𝐵↑2)) → (√‘𝐷) ∈ ℚ))
4510, 44sylbid 240 . . 3 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 → (√‘𝐷) ∈ ℚ))
4645necon3bd 2951 . 2 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ (√‘𝐷) ∈ ℚ → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0))
4746imp 406 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  cq 12987  cexp 14098  csqrt 15268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270
This theorem is referenced by:  pellexlem3  42818
  Copyright terms: Public domain W3C validator