![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmcl | Structured version Visualization version GIF version |
Description: The norm of a normed group is closed in the reals. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
Ref | Expression |
---|---|
nmcl | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | nmf.n | . . 3 ⊢ 𝑁 = (norm‘𝐺) | |
3 | 1, 2 | nmf 24445 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑁:𝑋⟶ℝ) |
4 | 3 | ffvelcdmda 7086 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 ℝcr 11115 Basecbs 17151 normcnm 24406 NrmGrpcngp 24407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-0g 17394 df-topgen 17396 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-xms 24147 df-ms 24148 df-nm 24412 df-ngp 24413 |
This theorem is referenced by: nmrpcl 24450 nm2dif 24455 nmgt0 24460 nminvr 24507 nmdvr 24508 nlmmul0or 24521 nlmvscnlem2 24523 nlmvscnlem1 24524 nrginvrcnlem 24529 nmoi 24566 nmoix 24567 nmoi2 24568 nmoleub 24569 nmo0 24573 nmoeq0 24574 nmoco 24575 nmotri 24577 nmoid 24580 nmoleub2lem 24962 nmoleub2lem3 24963 nmoleub2lem2 24964 nmoleub3 24967 nmhmcn 24968 ncvsm1 25003 ncvspi 25005 ncvs1 25006 cphnmf 25044 reipcl 25046 ipge0 25047 ipcnlem2 25093 ipcnlem1 25094 minveclem1 25273 minveclem2 25275 minveclem4 25281 minveclem6 25283 pjthlem1 25286 |
Copyright terms: Public domain | W3C validator |