| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmcl | Structured version Visualization version GIF version | ||
| Description: The norm of a normed group is closed in the reals. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
| nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
| Ref | Expression |
|---|---|
| nmcl | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | nmf.n | . . 3 ⊢ 𝑁 = (norm‘𝐺) | |
| 3 | 1, 2 | nmf 24536 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑁:𝑋⟶ℝ) |
| 4 | 3 | ffvelcdmda 7038 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℝcr 11043 Basecbs 17155 normcnm 24497 NrmGrpcngp 24498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-0g 17380 df-topgen 17382 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-xms 24241 df-ms 24242 df-nm 24503 df-ngp 24504 |
| This theorem is referenced by: nmrpcl 24541 nm2dif 24546 nmgt0 24551 nminvr 24590 nmdvr 24591 nlmmul0or 24604 nlmvscnlem2 24606 nlmvscnlem1 24607 nrginvrcnlem 24612 nmoi 24649 nmoix 24650 nmoi2 24651 nmoleub 24652 nmo0 24656 nmoeq0 24657 nmoco 24658 nmotri 24660 nmoid 24663 nmoleub2lem 25047 nmoleub2lem3 25048 nmoleub2lem2 25049 nmoleub3 25052 nmhmcn 25053 ncvsm1 25087 ncvspi 25089 ncvs1 25090 cphnmf 25128 reipcl 25130 ipge0 25131 ipcnlem2 25177 ipcnlem1 25178 minveclem1 25357 minveclem2 25359 minveclem4 25365 minveclem6 25367 pjthlem1 25370 |
| Copyright terms: Public domain | W3C validator |