![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2f1o | Structured version Visualization version GIF version |
Description: π is a 1-1 onto function. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | β’ π = (VtxβπΊ) |
extwwlkfab.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
extwwlkfab.f | β’ πΉ = (π(ClWWalksNOnβπΊ)(π β 2)) |
numclwwlk.t | β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) |
Ref | Expression |
---|---|
numclwwlk1lem2f1o | β’ ((πΊ β USGraph β§ π β π β§ π β (β€β₯β3)) β π:(ππΆπ)β1-1-ontoβ(πΉ Γ (πΊ NeighbVtx π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | . . 3 β’ π = (VtxβπΊ) | |
2 | extwwlkfab.c | . . 3 β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) | |
3 | extwwlkfab.f | . . 3 β’ πΉ = (π(ClWWalksNOnβπΊ)(π β 2)) | |
4 | numclwwlk.t | . . 3 β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) | |
5 | 1, 2, 3, 4 | numclwwlk1lem2f1 30223 | . 2 β’ ((πΊ β USGraph β§ π β π β§ π β (β€β₯β3)) β π:(ππΆπ)β1-1β(πΉ Γ (πΊ NeighbVtx π))) |
6 | 1, 2, 3, 4 | numclwwlk1lem2fo 30224 | . 2 β’ ((πΊ β USGraph β§ π β π β§ π β (β€β₯β3)) β π:(ππΆπ)βontoβ(πΉ Γ (πΊ NeighbVtx π))) |
7 | df-f1o 6554 | . 2 β’ (π:(ππΆπ)β1-1-ontoβ(πΉ Γ (πΊ NeighbVtx π)) β (π:(ππΆπ)β1-1β(πΉ Γ (πΊ NeighbVtx π)) β§ π:(ππΆπ)βontoβ(πΉ Γ (πΊ NeighbVtx π)))) | |
8 | 5, 6, 7 | sylanbrc 581 | 1 β’ ((πΊ β USGraph β§ π β π β§ π β (β€β₯β3)) β π:(ππΆπ)β1-1-ontoβ(πΉ Γ (πΊ NeighbVtx π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3419 β¨cop 4635 β¦ cmpt 5231 Γ cxp 5675 β1-1βwf1 6544 βontoβwfo 6545 β1-1-ontoβwf1o 6546 βcfv 6547 (class class class)co 7417 β cmpo 7419 1c1 11139 β cmin 11474 2c2 12297 3c3 12298 β€β₯cuz 12852 prefix cpfx 14652 Vtxcvtx 28865 USGraphcusgr 29018 NeighbVtx cnbgr 29201 ClWWalksNOncclwwlknon 29953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-lsw 14545 df-concat 14553 df-s1 14578 df-substr 14623 df-pfx 14653 df-s2 14831 df-edg 28917 df-upgr 28951 df-umgr 28952 df-usgr 29020 df-nbgr 29202 df-wwlks 29697 df-wwlksn 29698 df-clwwlk 29848 df-clwwlkn 29891 df-clwwlknon 29954 |
This theorem is referenced by: numclwwlk1lem2 30226 |
Copyright terms: Public domain | W3C validator |