MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprmge3 Structured version   Visualization version   GIF version

Theorem oddprmge3 16644
Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.)
Assertion
Ref Expression
oddprmge3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))

Proof of Theorem oddprmge3
StepHypRef Expression
1 eldifi 4121 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 oddprmgt2 16643 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
3 3z 12599 . . . . 5 3 ∈ ℤ
43a1i 11 . . . 4 ((𝑃 ∈ ℙ ∧ 2 < 𝑃) → 3 ∈ ℤ)
5 prmz 16619 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
65adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 2 < 𝑃) → 𝑃 ∈ ℤ)
7 df-3 12280 . . . . 5 3 = (2 + 1)
8 2z 12598 . . . . . . 7 2 ∈ ℤ
9 zltp1le 12616 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
108, 5, 9sylancr 586 . . . . . 6 (𝑃 ∈ ℙ → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
1110biimpa 476 . . . . 5 ((𝑃 ∈ ℙ ∧ 2 < 𝑃) → (2 + 1) ≤ 𝑃)
127, 11eqbrtrid 5176 . . . 4 ((𝑃 ∈ ℙ ∧ 2 < 𝑃) → 3 ≤ 𝑃)
134, 6, 123jca 1125 . . 3 ((𝑃 ∈ ℙ ∧ 2 < 𝑃) → (3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃))
141, 2, 13syl2anc 583 . 2 (𝑃 ∈ (ℙ ∖ {2}) → (3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃))
15 eluz2 12832 . 2 (𝑃 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃))
1614, 15sylibr 233 1 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098  cdif 3940  {csn 4623   class class class wbr 5141  cfv 6537  (class class class)co 7405  1c1 11113   + caddc 11115   < clt 11252  cle 11253  2c2 12271  3c3 12272  cz 12562  cuz 12826  cprime 16615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16205  df-prm 16616
This theorem is referenced by:  gausslemma2dlem0i  27252  numclwwlk5  30150  lighneallem2  46846  oddprmuzge3  46956
  Copyright terms: Public domain W3C validator