| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opgpgvtx | Structured version Visualization version GIF version | ||
| Description: A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| opgpgvtx.i | ⊢ 𝐼 = (0..^𝑁) |
| opgpgvtx.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| opgpgvtx.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| opgpgvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| opgpgvtx | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opgpgvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | opgpgvtx.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 3 | 2 | fveq2i 6868 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
| 4 | 1, 3 | eqtri 2753 | . . . 4 ⊢ 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
| 5 | eluzge3nn 12863 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 6 | opgpgvtx.j | . . . . . 6 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 7 | opgpgvtx.i | . . . . . 6 ⊢ 𝐼 = (0..^𝑁) | |
| 8 | 6, 7 | gpgvtx 47989 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) |
| 9 | 5, 8 | sylan 580 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) |
| 10 | 4, 9 | eqtrid 2777 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝑉 = ({0, 1} × 𝐼)) |
| 11 | 10 | eleq2d 2815 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ 〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼))) |
| 12 | opelxp 5682 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼)) | |
| 13 | 12 | a1i 11 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼))) |
| 14 | c0ex 11186 | . . . . 5 ⊢ 0 ∈ V | |
| 15 | 1ex 11188 | . . . . 5 ⊢ 1 ∈ V | |
| 16 | 14, 15 | elpr2 4624 | . . . 4 ⊢ (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1)) |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1))) |
| 18 | 17 | anbi1d 631 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼) ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| 19 | 11, 13, 18 | 3bitrd 305 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4599 〈cop 4603 × cxp 5644 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 / cdiv 11851 ℕcn 12197 2c2 12252 3c3 12253 ℤ≥cuz 12809 ..^cfzo 13628 ⌈cceil 13765 Vtxcvtx 28930 gPetersenGr cgpg 47986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-oadd 8447 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9872 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-hash 14306 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-edgf 28923 df-vtx 28932 df-gpg 47987 |
| This theorem is referenced by: gpg3kgrtriex 48033 |
| Copyright terms: Public domain | W3C validator |