| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opgpgvtx | Structured version Visualization version GIF version | ||
| Description: A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| opgpgvtx.i | ⊢ 𝐼 = (0..^𝑁) |
| opgpgvtx.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| opgpgvtx.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| opgpgvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| opgpgvtx | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opgpgvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | opgpgvtx.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 3 | 2 | fveq2i 6831 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
| 4 | 1, 3 | eqtri 2756 | . . . 4 ⊢ 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
| 5 | eluz3nn 12789 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 6 | opgpgvtx.j | . . . . . 6 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 7 | opgpgvtx.i | . . . . . 6 ⊢ 𝐼 = (0..^𝑁) | |
| 8 | 6, 7 | gpgvtx 48167 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) |
| 9 | 5, 8 | sylan 580 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) |
| 10 | 4, 9 | eqtrid 2780 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝑉 = ({0, 1} × 𝐼)) |
| 11 | 10 | eleq2d 2819 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ 〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼))) |
| 12 | opelxp 5655 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼)) | |
| 13 | 12 | a1i 11 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼))) |
| 14 | c0ex 11113 | . . . . 5 ⊢ 0 ∈ V | |
| 15 | 1ex 11115 | . . . . 5 ⊢ 1 ∈ V | |
| 16 | 14, 15 | elpr2 4602 | . . . 4 ⊢ (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1)) |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1))) |
| 18 | 17 | anbi1d 631 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ((𝑋 ∈ {0, 1} ∧ 𝑌 ∈ 𝐼) ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| 19 | 11, 13, 18 | 3bitrd 305 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {cpr 4577 〈cop 4581 × cxp 5617 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 / cdiv 11781 ℕcn 12132 2c2 12187 3c3 12188 ℤ≥cuz 12738 ..^cfzo 13556 ⌈cceil 13697 Vtxcvtx 28976 gPetersenGr cgpg 48164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-hash 14240 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-edgf 28969 df-vtx 28978 df-gpg 48165 |
| This theorem is referenced by: gpgedg2ov 48190 gpgedg2iv 48191 gpg3kgrtriex 48213 |
| Copyright terms: Public domain | W3C validator |