Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opgpgvtx Structured version   Visualization version   GIF version

Theorem opgpgvtx 47959
Description: A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
opgpgvtx.i 𝐼 = (0..^𝑁)
opgpgvtx.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
opgpgvtx.g 𝐺 = (𝑁 gPetersenGr 𝐾)
opgpgvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
opgpgvtx ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⟨𝑋, 𝑌⟩ ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌𝐼)))

Proof of Theorem opgpgvtx
StepHypRef Expression
1 opgpgvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 opgpgvtx.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6914 . . . . 5 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2764 . . . 4 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾))
5 eluzge3nn 12936 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
6 opgpgvtx.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
7 opgpgvtx.i . . . . . 6 𝐼 = (0..^𝑁)
86, 7gpgvtx 47951 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼))
95, 8sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼))
104, 9eqtrid 2788 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝑉 = ({0, 1} × 𝐼))
1110eleq2d 2826 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⟨𝑋, 𝑌⟩ ∈ 𝑉 ↔ ⟨𝑋, 𝑌⟩ ∈ ({0, 1} × 𝐼)))
12 opelxp 5726 . . 3 (⟨𝑋, 𝑌⟩ ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌𝐼))
1312a1i 11 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⟨𝑋, 𝑌⟩ ∈ ({0, 1} × 𝐼) ↔ (𝑋 ∈ {0, 1} ∧ 𝑌𝐼)))
14 c0ex 11259 . . . . 5 0 ∈ V
15 1ex 11261 . . . . 5 1 ∈ V
1614, 15elpr2 4658 . . . 4 (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1))
1716a1i 11 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋 ∈ {0, 1} ↔ (𝑋 = 0 ∨ 𝑋 = 1)))
1817anbi1d 631 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((𝑋 ∈ {0, 1} ∧ 𝑌𝐼) ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌𝐼)))
1911, 13, 183bitrd 305 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⟨𝑋, 𝑌⟩ ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1538  wcel 2107  {cpr 4634  cop 4638   × cxp 5688  cfv 6566  (class class class)co 7435  0cc0 11159  1c1 11160   / cdiv 11924  cn 12270  2c2 12325  3c3 12326  cuz 12882  ..^cfzo 13697  cceil 13834  Vtxcvtx 29036   gPetersenGr cgpg 47948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-oadd 8515  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-xnn0 12604  df-z 12618  df-dec 12738  df-uz 12883  df-fz 13551  df-hash 14373  df-struct 17187  df-slot 17222  df-ndx 17234  df-base 17252  df-edgf 29027  df-vtx 29038  df-gpg 47949
This theorem is referenced by:  gpg3kgrtriex  47994
  Copyright terms: Public domain W3C validator