| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . 4
⊢
(0..^𝑁) = (0..^𝑁) |
| 2 | | gpgvtx0.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 3 | | gpgvtx0.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 4 | | gpgvtx0.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 5 | 1, 2, 3, 4 | gpgvtxel 47978 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | 3 | fveq2i 6889 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘(𝑁 gPetersenGr
𝐾)) |
| 7 | 4, 6 | eqtri 2757 |
. . . . . . 7
⊢ 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
| 8 | | eluzge3nn 12914 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 9 | 2, 1 | gpgvtx 47975 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 10 | 8, 9 | sylan 580 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
| 12 | 7, 11 | eqtrid 2781 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑉 = ({0, 1} × (0..^𝑁))) |
| 13 | | 1ex 11239 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
| 14 | 13 | prid2 4743 |
. . . . . . . . . . 11
⊢ 1 ∈
{0, 1} |
| 15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 1 ∈ {0, 1}) |
| 16 | | elfzoelz 13681 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ ℤ) |
| 19 | | elfzoelz 13681 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈
(1..^(⌈‘(𝑁 /
2))) → 𝐾 ∈
ℤ) |
| 20 | 19, 2 | eleq2s 2851 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝐾 ∈ ℤ) |
| 23 | 18, 22 | zaddcld 12709 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦 + 𝐾) ∈ ℤ) |
| 24 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ) |
| 26 | | zmodfzo 13916 |
. . . . . . . . . . 11
⊢ (((𝑦 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 27 | 23, 25, 26 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 28 | 15, 27 | opelxpd 5704 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))) |
| 29 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ (0..^𝑁)) |
| 30 | 15, 29 | opelxpd 5704 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 〈1, 𝑦〉 ∈ ({0, 1} × (0..^𝑁))) |
| 31 | 18, 22 | zsubcld 12710 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦 − 𝐾) ∈ ℤ) |
| 32 | | zmodfzo 13916 |
. . . . . . . . . . 11
⊢ (((𝑦 − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 − 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 33 | 31, 25, 32 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦 − 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 34 | 15, 33 | opelxpd 5704 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))) |
| 35 | 28, 30, 34 | 3jca 1128 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈1, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈1,
((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
| 36 | 35 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈1, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈1,
((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
| 37 | | eleq2 2822 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ↔ 〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
| 38 | | eleq2 2822 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈1, 𝑦〉 ∈ 𝑉 ↔ 〈1, 𝑦〉 ∈ ({0, 1} × (0..^𝑁)))) |
| 39 | | eleq2 2822 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉 ↔ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
| 40 | 37, 38, 39 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → ((〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉) ↔ (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈1, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈1,
((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))))) |
| 41 | 40 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → ((〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉) ↔ (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈1, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈1,
((𝑦 − 𝐾) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))))) |
| 42 | 36, 41 | mpbird 257 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 43 | 12, 42 | mpdan 687 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 44 | | vex 3467 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 45 | | vex 3467 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 46 | 44, 45 | op2ndd 8007 |
. . . . . 6
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (2nd ‘𝑋) = 𝑦) |
| 47 | | oveq1 7420 |
. . . . . . . . . 10
⊢
((2nd ‘𝑋) = 𝑦 → ((2nd ‘𝑋) + 𝐾) = (𝑦 + 𝐾)) |
| 48 | 47 | oveq1d 7428 |
. . . . . . . . 9
⊢
((2nd ‘𝑋) = 𝑦 → (((2nd ‘𝑋) + 𝐾) mod 𝑁) = ((𝑦 + 𝐾) mod 𝑁)) |
| 49 | 48 | opeq2d 4860 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, ((𝑦 + 𝐾) mod 𝑁)〉) |
| 50 | 49 | eleq1d 2818 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ↔ 〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 51 | | opeq2 4854 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈1, (2nd ‘𝑋)〉 = 〈1, 𝑦〉) |
| 52 | 51 | eleq1d 2818 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈1, (2nd
‘𝑋)〉 ∈
𝑉 ↔ 〈1, 𝑦〉 ∈ 𝑉)) |
| 53 | | oveq1 7420 |
. . . . . . . . . 10
⊢
((2nd ‘𝑋) = 𝑦 → ((2nd ‘𝑋) − 𝐾) = (𝑦 − 𝐾)) |
| 54 | 53 | oveq1d 7428 |
. . . . . . . . 9
⊢
((2nd ‘𝑋) = 𝑦 → (((2nd ‘𝑋) − 𝐾) mod 𝑁) = ((𝑦 − 𝐾) mod 𝑁)) |
| 55 | 54 | opeq2d 4860 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 = 〈1, ((𝑦 − 𝐾) mod 𝑁)〉) |
| 56 | 55 | eleq1d 2818 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉 ↔ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 57 | 50, 52, 56 | 3anbi123d 1437 |
. . . . . 6
⊢
((2nd ‘𝑋) = 𝑦 → ((〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉) ↔ (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉))) |
| 58 | 46, 57 | syl 17 |
. . . . 5
⊢ (𝑋 = 〈𝑥, 𝑦〉 → ((〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉) ↔ (〈1, ((𝑦 + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, 𝑦〉 ∈ 𝑉 ∧ 〈1, ((𝑦 − 𝐾) mod 𝑁)〉 ∈ 𝑉))) |
| 59 | 43, 58 | syl5ibrcom 247 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = 〈𝑥, 𝑦〉 → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉))) |
| 60 | 59 | rexlimdvva 3200 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉))) |
| 61 | 5, 60 | sylbid 240 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉))) |
| 62 | 61 | imp 406 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |