Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtx1 Structured version   Visualization version   GIF version

Theorem gpgvtx1 48085
Description: The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.)
Hypotheses
Ref Expression
gpgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgvtx0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
gpgvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))

Proof of Theorem gpgvtx1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (0..^𝑁) = (0..^𝑁)
2 gpgvtx0.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgvtx0.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
51, 2, 3, 4gpgvtxel 48078 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩))
63fveq2i 6820 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
74, 6eqtri 2754 . . . . . . 7 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾))
8 eluz3nn 12782 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
92, 1gpgvtx 48074 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
108, 9sylan 580 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1110adantr 480 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
127, 11eqtrid 2778 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑉 = ({0, 1} × (0..^𝑁)))
13 1ex 11103 . . . . . . . . . . . 12 1 ∈ V
1413prid2 4711 . . . . . . . . . . 11 1 ∈ {0, 1}
1514a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 1 ∈ {0, 1})
16 elfzoelz 13554 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ)
1817adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ ℤ)
19 elfzoelz 13554 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ)
2019, 2eleq2s 2849 . . . . . . . . . . . . . 14 (𝐾𝐽𝐾 ∈ ℤ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐾 ∈ ℤ)
2221adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝐾 ∈ ℤ)
2318, 22zaddcld 12576 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦 + 𝐾) ∈ ℤ)
248adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝑁 ∈ ℕ)
2524adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ)
26 zmodfzo 13793 . . . . . . . . . . 11 (((𝑦 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
2723, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
2815, 27opelxpd 5650 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
29 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ (0..^𝑁))
3015, 29opelxpd 5650 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)))
3118, 22zsubcld 12577 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦𝐾) ∈ ℤ)
32 zmodfzo 13793 . . . . . . . . . . 11 (((𝑦𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦𝐾) mod 𝑁) ∈ (0..^𝑁))
3331, 25, 32syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦𝐾) mod 𝑁) ∈ (0..^𝑁))
3415, 33opelxpd 5650 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
3528, 30, 343jca 1128 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
3635adantr 480 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
37 eleq2 2820 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
38 eleq2 2820 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, 𝑦⟩ ∈ 𝑉 ↔ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁))))
39 eleq2 2820 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
4037, 38, 393anbi123d 1438 . . . . . . . 8 (𝑉 = ({0, 1} × (0..^𝑁)) → ((⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
4140adantl 481 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → ((⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
4236, 41mpbird 257 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
4312, 42mpdan 687 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
44 vex 3440 . . . . . . 7 𝑥 ∈ V
45 vex 3440 . . . . . . 7 𝑦 ∈ V
4644, 45op2ndd 7927 . . . . . 6 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
47 oveq1 7348 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 𝐾) = (𝑦 + 𝐾))
4847oveq1d 7356 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 𝐾) mod 𝑁) = ((𝑦 + 𝐾) mod 𝑁))
4948opeq2d 4827 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩)
5049eleq1d 2816 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉))
51 opeq2 4821 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (2nd𝑋)⟩ = ⟨1, 𝑦⟩)
5251eleq1d 2816 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ↔ ⟨1, 𝑦⟩ ∈ 𝑉))
53 oveq1 7348 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 𝐾) = (𝑦𝐾))
5453oveq1d 7356 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 𝐾) mod 𝑁) = ((𝑦𝐾) mod 𝑁))
5554opeq2d 4827 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑦𝐾) mod 𝑁)⟩)
5655eleq1d 2816 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
5750, 52, 563anbi123d 1438 . . . . . 6 ((2nd𝑋) = 𝑦 → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉)))
5846, 57syl 17 . . . . 5 (𝑋 = ⟨𝑥, 𝑦⟩ → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉)))
5943, 58syl5ibrcom 247 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = ⟨𝑥, 𝑦⟩ → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
6059rexlimdvva 3189 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩ → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
615, 60sylbid 240 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
6261imp 406 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {cpr 4573  cop 4577   × cxp 5609  cfv 6476  (class class class)co 7341  2nd c2nd 7915  0cc0 11001  1c1 11002   + caddc 11004  cmin 11339   / cdiv 11769  cn 12120  2c2 12175  3c3 12176  cz 12463  cuz 12727  ..^cfzo 13549  cceil 13690   mod cmo 13768  Vtxcvtx 28969   gPetersenGr cgpg 48071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-hash 14233  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-edgf 28962  df-vtx 28971  df-gpg 48072
This theorem is referenced by:  gpgnbgrvtx0  48105  gpgnbgrvtx1  48106
  Copyright terms: Public domain W3C validator