Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtx1 Structured version   Visualization version   GIF version

Theorem gpgvtx1 47962
Description: The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.)
Hypotheses
Ref Expression
gpgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgvtx0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
gpgvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))

Proof of Theorem gpgvtx1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (0..^𝑁) = (0..^𝑁)
2 gpgvtx0.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgvtx0.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
51, 2, 3, 4gpgvtxel 47958 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩))
63fveq2i 6876 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
74, 6eqtri 2757 . . . . . . 7 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾))
8 eluzge3nn 12899 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
92, 1gpgvtx 47955 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
108, 9sylan 580 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1110adantr 480 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
127, 11eqtrid 2781 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑉 = ({0, 1} × (0..^𝑁)))
13 1ex 11224 . . . . . . . . . . . 12 1 ∈ V
1413prid2 4737 . . . . . . . . . . 11 1 ∈ {0, 1}
1514a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 1 ∈ {0, 1})
16 elfzoelz 13666 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ)
1817adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ ℤ)
19 elfzoelz 13666 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ)
2019, 2eleq2s 2851 . . . . . . . . . . . . . 14 (𝐾𝐽𝐾 ∈ ℤ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐾 ∈ ℤ)
2221adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝐾 ∈ ℤ)
2318, 22zaddcld 12694 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦 + 𝐾) ∈ ℤ)
248adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝑁 ∈ ℕ)
2524adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ)
26 zmodfzo 13901 . . . . . . . . . . 11 (((𝑦 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
2723, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
2815, 27opelxpd 5691 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
29 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑦 ∈ (0..^𝑁))
3015, 29opelxpd 5691 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)))
3118, 22zsubcld 12695 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑦𝐾) ∈ ℤ)
32 zmodfzo 13901 . . . . . . . . . . 11 (((𝑦𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦𝐾) mod 𝑁) ∈ (0..^𝑁))
3331, 25, 32syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ((𝑦𝐾) mod 𝑁) ∈ (0..^𝑁))
3415, 33opelxpd 5691 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
3528, 30, 343jca 1128 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
3635adantr 480 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
37 eleq2 2822 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
38 eleq2 2822 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, 𝑦⟩ ∈ 𝑉 ↔ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁))))
39 eleq2 2822 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
4037, 38, 393anbi123d 1437 . . . . . . . 8 (𝑉 = ({0, 1} × (0..^𝑁)) → ((⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
4140adantl 481 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → ((⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
4236, 41mpbird 257 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
4312, 42mpdan 687 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
44 vex 3461 . . . . . . 7 𝑥 ∈ V
45 vex 3461 . . . . . . 7 𝑦 ∈ V
4644, 45op2ndd 7994 . . . . . 6 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
47 oveq1 7407 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 𝐾) = (𝑦 + 𝐾))
4847oveq1d 7415 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 𝐾) mod 𝑁) = ((𝑦 + 𝐾) mod 𝑁))
4948opeq2d 4854 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩)
5049eleq1d 2818 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉))
51 opeq2 4848 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (2nd𝑋)⟩ = ⟨1, 𝑦⟩)
5251eleq1d 2818 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ↔ ⟨1, 𝑦⟩ ∈ 𝑉))
53 oveq1 7407 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 𝐾) = (𝑦𝐾))
5453oveq1d 7415 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 𝐾) mod 𝑁) = ((𝑦𝐾) mod 𝑁))
5554opeq2d 4854 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑦𝐾) mod 𝑁)⟩)
5655eleq1d 2818 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉))
5750, 52, 563anbi123d 1437 . . . . . 6 ((2nd𝑋) = 𝑦 → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉)))
5846, 57syl 17 . . . . 5 (𝑋 = ⟨𝑥, 𝑦⟩ → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, 𝑦⟩ ∈ 𝑉 ∧ ⟨1, ((𝑦𝐾) mod 𝑁)⟩ ∈ 𝑉)))
5943, 58syl5ibrcom 247 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = ⟨𝑥, 𝑦⟩ → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
6059rexlimdvva 3196 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩ → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
615, 60sylbid 240 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)))
6261imp 406 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  {cpr 4601  cop 4605   × cxp 5650  cfv 6528  (class class class)co 7400  2nd c2nd 7982  0cc0 11122  1c1 11123   + caddc 11125  cmin 11459   / cdiv 11887  cn 12233  2c2 12288  3c3 12289  cz 12581  cuz 12845  ..^cfzo 13661  cceil 13798   mod cmo 13876  Vtxcvtx 28909   gPetersenGr cgpg 47952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-hash 14339  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-edgf 28902  df-vtx 28911  df-gpg 47953
This theorem is referenced by:  gpgnbgrvtx0  47983  gpgnbgrvtx1  47984
  Copyright terms: Public domain W3C validator