![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcrec | Structured version Visualization version GIF version |
Description: Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pcrec | ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12669 | . . . . . 6 ⊢ 1 ∈ ℤ | |
2 | zq 13015 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ ℚ |
4 | ax-1ne0 11249 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | 3, 4 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℚ ∧ 1 ≠ 0) |
6 | pcqdiv 16899 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℚ ∧ 1 ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴))) | |
7 | 5, 6 | mp3an2 1449 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴))) |
8 | pc1 16897 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
10 | 9 | oveq1d 7460 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴)) = (0 − (𝑃 pCnt 𝐴))) |
11 | 7, 10 | eqtrd 2774 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = (0 − (𝑃 pCnt 𝐴))) |
12 | df-neg 11519 | . 2 ⊢ -(𝑃 pCnt 𝐴) = (0 − (𝑃 pCnt 𝐴)) | |
13 | 11, 12 | eqtr4di 2792 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 (class class class)co 7445 0cc0 11180 1c1 11181 − cmin 11516 -cneg 11517 / cdiv 11943 ℤcz 12635 ℚcq 13009 ℙcprime 16712 pCnt cpc 16878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-sup 9507 df-inf 9508 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-n0 12550 df-z 12636 df-uz 12900 df-q 13010 df-rp 13054 df-fl 13839 df-mod 13917 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-dvds 16297 df-gcd 16535 df-prm 16713 df-pc 16879 |
This theorem is referenced by: pcexp 16901 |
Copyright terms: Public domain | W3C validator |