| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pidlnzb | Structured version Visualization version GIF version | ||
| Description: A principal ideal is nonzero iff it is generated by a nonzero elements (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| pidlnzb.1 | ⊢ 𝐵 = (Base‘𝑅) |
| pidlnzb.2 | ⊢ 0 = (0g‘𝑅) |
| pidlnzb.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
| Ref | Expression |
|---|---|
| pidlnzb | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ≠ 0 ↔ (𝐾‘{𝑋}) ≠ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pidlnzb.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | pidlnzb.2 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | pidlnzb.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 4 | 1, 2, 3 | pidlnz 33345 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐾‘{𝑋}) ≠ { 0 }) |
| 5 | 4 | 3expa 1118 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≠ 0 ) → (𝐾‘{𝑋}) ≠ { 0 }) |
| 6 | sneq 4618 | . . . . . . . 8 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
| 7 | 6 | fveq2d 6891 | . . . . . . 7 ⊢ (𝑋 = 0 → (𝐾‘{𝑋}) = (𝐾‘{ 0 })) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 = 0 ) → (𝐾‘{𝑋}) = (𝐾‘{ 0 })) |
| 9 | 3, 2 | rsp0 21215 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 }) |
| 10 | 9 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 = 0 ) → (𝐾‘{ 0 }) = { 0 }) |
| 11 | 8, 10 | eqtrd 2769 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 = 0 ) → (𝐾‘{𝑋}) = { 0 }) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 → (𝐾‘{𝑋}) = { 0 })) |
| 13 | 12 | necon3d 2952 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝐾‘{𝑋}) ≠ { 0 } → 𝑋 ≠ 0 )) |
| 14 | 13 | imp 406 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝐾‘{𝑋}) ≠ { 0 }) → 𝑋 ≠ 0 ) |
| 15 | 5, 14 | impbida 800 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ≠ 0 ↔ (𝐾‘{𝑋}) ≠ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {csn 4608 ‘cfv 6542 Basecbs 17230 0gc0g 17460 Ringcrg 20203 RSpancrsp 21184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-subg 19115 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-subrg 20543 df-lmod 20833 df-lss 20903 df-lsp 20943 df-sra 21145 df-rgmod 21146 df-rsp 21186 |
| This theorem is referenced by: irngnminplynz 33696 |
| Copyright terms: Public domain | W3C validator |