HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhip Structured version   Visualization version   GIF version

Theorem hhip 31113
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhip ·ih = (·𝑖OLD𝑈)

Proof of Theorem hhip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polid 31095 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
2 hhnv.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 31101 . . . . 5 𝑈 ∈ NrmCVec
42hhba 31103 . . . . . 6 ℋ = (BaseSet‘𝑈)
52hhva 31102 . . . . . 6 + = ( +𝑣𝑈)
62hhsm 31105 . . . . . 6 · = ( ·𝑠OLD𝑈)
72hhnm 31107 . . . . . 6 norm = (normCV𝑈)
8 eqid 2730 . . . . . 6 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
92hhvs 31106 . . . . . 6 = ( −𝑣𝑈)
104, 5, 6, 7, 8, 9ipval3 30645 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
113, 10mp3an1 1450 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
121, 11eqtr4d 2768 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
1312rgen2 3178 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)
14 ax-hfi 31015 . . 3 ·ih :( ℋ × ℋ)⟶ℂ
154, 8ipf 30649 . . . 4 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ)
163, 15ax-mp 5 . . 3 (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ
17 ffn 6691 . . . 4 ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ))
18 ffn 6691 . . . 4 ((·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD𝑈) Fn ( ℋ × ℋ))
19 eqfnov2 7522 . . . 4 (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2017, 18, 19syl2an 596 . . 3 (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2114, 16, 20mp2an 692 . 2 ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
2213, 21mpbir 231 1 ·ih = (·𝑖OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  ici 11077   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  2c2 12248  4c4 12250  cexp 14033  NrmCVeccnv 30520  ·𝑖OLDcdip 30636  chba 30855   + cva 30856   · csm 30857   ·ih csp 30858  normcno 30859   cmv 30861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-dip 30637  df-hnorm 30904  df-hvsub 30907
This theorem is referenced by:  bcsiHIL  31116  occllem  31239  hmopbdoptHIL  31924
  Copyright terms: Public domain W3C validator