| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version | ||
| Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| Ref | Expression |
|---|---|
| hhip | ⊢ ·ih = (·𝑖OLD‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polid 31122 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) | |
| 2 | hhnv.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | 2 | hhnv 31128 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 4 | 2 | hhba 31130 | . . . . . 6 ⊢ ℋ = (BaseSet‘𝑈) |
| 5 | 2 | hhva 31129 | . . . . . 6 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| 6 | 2 | hhsm 31132 | . . . . . 6 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 7 | 2 | hhnm 31134 | . . . . . 6 ⊢ normℎ = (normCV‘𝑈) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
| 9 | 2 | hhvs 31133 | . . . . . 6 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
| 10 | 4, 5, 6, 7, 8, 9 | ipval3 30672 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
| 11 | 3, 10 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
| 12 | 1, 11 | eqtr4d 2767 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
| 13 | 12 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦) |
| 14 | ax-hfi 31042 | . . 3 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 15 | 4, 8 | ipf 30676 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) |
| 16 | 3, 15 | ax-mp 5 | . . 3 ⊢ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ |
| 17 | ffn 6656 | . . . 4 ⊢ ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ)) | |
| 18 | ffn 6656 | . . . 4 ⊢ ((·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) | |
| 19 | eqfnov2 7483 | . . . 4 ⊢ (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) | |
| 20 | 17, 18, 19 | syl2an 596 | . . 3 ⊢ (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) |
| 21 | 14, 16, 20 | mp2an 692 | . 2 ⊢ ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
| 22 | 13, 21 | mpbir 231 | 1 ⊢ ·ih = (·𝑖OLD‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4585 × cxp 5621 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ici 11030 + caddc 11031 · cmul 11033 − cmin 11366 / cdiv 11796 2c2 12202 4c4 12204 ↑cexp 13987 NrmCVeccnv 30547 ·𝑖OLDcdip 30663 ℋchba 30882 +ℎ cva 30883 ·ℎ csm 30884 ·ih csp 30885 normℎcno 30886 −ℎ cmv 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-hilex 30962 ax-hfvadd 30963 ax-hvcom 30964 ax-hvass 30965 ax-hv0cl 30966 ax-hvaddid 30967 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvmulass 30970 ax-hvdistr1 30971 ax-hvdistr2 30972 ax-hvmul0 30973 ax-hfi 31042 ax-his1 31045 ax-his2 31046 ax-his3 31047 ax-his4 31048 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-sum 15613 df-grpo 30456 df-gid 30457 df-ginv 30458 df-gdiv 30459 df-ablo 30508 df-vc 30522 df-nv 30555 df-va 30558 df-ba 30559 df-sm 30560 df-0v 30561 df-vs 30562 df-nmcv 30563 df-dip 30664 df-hnorm 30931 df-hvsub 30934 |
| This theorem is referenced by: bcsiHIL 31143 occllem 31266 hmopbdoptHIL 31951 |
| Copyright terms: Public domain | W3C validator |