Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhip | ⊢ ·ih = (·𝑖OLD‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 29809 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29815 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | 2 | hhba 29817 | . . . . . 6 ⊢ ℋ = (BaseSet‘𝑈) |
5 | 2 | hhva 29816 | . . . . . 6 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 2 | hhsm 29819 | . . . . . 6 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | 2 | hhnm 29821 | . . . . . 6 ⊢ normℎ = (normCV‘𝑈) |
8 | eqid 2736 | . . . . . 6 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
9 | 2 | hhvs 29820 | . . . . . 6 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 29359 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
11 | 3, 10 | mp3an1 1447 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
12 | 1, 11 | eqtr4d 2779 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
13 | 12 | rgen2 3190 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦) |
14 | ax-hfi 29729 | . . 3 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
15 | 4, 8 | ipf 29363 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) |
16 | 3, 15 | ax-mp 5 | . . 3 ⊢ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ |
17 | ffn 6651 | . . . 4 ⊢ ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ)) | |
18 | ffn 6651 | . . . 4 ⊢ ((·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) | |
19 | eqfnov2 7466 | . . . 4 ⊢ (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) | |
20 | 17, 18, 19 | syl2an 596 | . . 3 ⊢ (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) |
21 | 14, 16, 20 | mp2an 689 | . 2 ⊢ ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
22 | 13, 21 | mpbir 230 | 1 ⊢ ·ih = (·𝑖OLD‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 〈cop 4579 × cxp 5618 Fn wfn 6474 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ici 10974 + caddc 10975 · cmul 10977 − cmin 11306 / cdiv 11733 2c2 12129 4c4 12131 ↑cexp 13883 NrmCVeccnv 29234 ·𝑖OLDcdip 29350 ℋchba 29569 +ℎ cva 29570 ·ℎ csm 29571 ·ih csp 29572 normℎcno 29573 −ℎ cmv 29575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvmulass 29657 ax-hvdistr1 29658 ax-hvdistr2 29659 ax-hvmul0 29660 ax-hfi 29729 ax-his1 29732 ax-his2 29733 ax-his3 29734 ax-his4 29735 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-grpo 29143 df-gid 29144 df-ginv 29145 df-gdiv 29146 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-vs 29249 df-nmcv 29250 df-dip 29351 df-hnorm 29618 df-hvsub 29621 |
This theorem is referenced by: bcsiHIL 29830 occllem 29953 hmopbdoptHIL 30638 |
Copyright terms: Public domain | W3C validator |