HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhip Structured version   Visualization version   GIF version

Theorem hhip 31140
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhip ·ih = (·𝑖OLD𝑈)

Proof of Theorem hhip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polid 31122 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
2 hhnv.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 31128 . . . . 5 𝑈 ∈ NrmCVec
42hhba 31130 . . . . . 6 ℋ = (BaseSet‘𝑈)
52hhva 31129 . . . . . 6 + = ( +𝑣𝑈)
62hhsm 31132 . . . . . 6 · = ( ·𝑠OLD𝑈)
72hhnm 31134 . . . . . 6 norm = (normCV𝑈)
8 eqid 2729 . . . . . 6 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
92hhvs 31133 . . . . . 6 = ( −𝑣𝑈)
104, 5, 6, 7, 8, 9ipval3 30672 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
113, 10mp3an1 1450 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
121, 11eqtr4d 2767 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
1312rgen2 3169 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)
14 ax-hfi 31042 . . 3 ·ih :( ℋ × ℋ)⟶ℂ
154, 8ipf 30676 . . . 4 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ)
163, 15ax-mp 5 . . 3 (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ
17 ffn 6656 . . . 4 ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ))
18 ffn 6656 . . . 4 ((·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD𝑈) Fn ( ℋ × ℋ))
19 eqfnov2 7483 . . . 4 (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2017, 18, 19syl2an 596 . . 3 (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2114, 16, 20mp2an 692 . 2 ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
2213, 21mpbir 231 1 ·ih = (·𝑖OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4585   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  ici 11030   + caddc 11031   · cmul 11033  cmin 11366   / cdiv 11796  2c2 12202  4c4 12204  cexp 13987  NrmCVeccnv 30547  ·𝑖OLDcdip 30663  chba 30882   + cva 30883   · csm 30884   ·ih csp 30885  normcno 30886   cmv 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-hilex 30962  ax-hfvadd 30963  ax-hvcom 30964  ax-hvass 30965  ax-hv0cl 30966  ax-hvaddid 30967  ax-hfvmul 30968  ax-hvmulid 30969  ax-hvmulass 30970  ax-hvdistr1 30971  ax-hvdistr2 30972  ax-hvmul0 30973  ax-hfi 31042  ax-his1 31045  ax-his2 31046  ax-his3 31047  ax-his4 31048
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-grpo 30456  df-gid 30457  df-ginv 30458  df-gdiv 30459  df-ablo 30508  df-vc 30522  df-nv 30555  df-va 30558  df-ba 30559  df-sm 30560  df-0v 30561  df-vs 30562  df-nmcv 30563  df-dip 30664  df-hnorm 30931  df-hvsub 30934
This theorem is referenced by:  bcsiHIL  31143  occllem  31266  hmopbdoptHIL  31951
  Copyright terms: Public domain W3C validator