![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
Ref | Expression |
---|---|
hhip | β’ Β·ih = (Β·πOLDβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 30884 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ Β·ih π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
3 | 2 | hhnv 30890 | . . . . 5 β’ π β NrmCVec |
4 | 2 | hhba 30892 | . . . . . 6 β’ β = (BaseSetβπ) |
5 | 2 | hhva 30891 | . . . . . 6 β’ +β = ( +π£ βπ) |
6 | 2 | hhsm 30894 | . . . . . 6 β’ Β·β = ( Β·π OLD βπ) |
7 | 2 | hhnm 30896 | . . . . . 6 β’ normβ = (normCVβπ) |
8 | eqid 2724 | . . . . . 6 β’ (Β·πOLDβπ) = (Β·πOLDβπ) | |
9 | 2 | hhvs 30895 | . . . . . 6 β’ ββ = ( βπ£ βπ) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 30434 | . . . . 5 β’ ((π β NrmCVec β§ π₯ β β β§ π¦ β β) β (π₯(Β·πOLDβπ)π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) |
11 | 3, 10 | mp3an1 1444 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(Β·πOLDβπ)π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) |
12 | 1, 11 | eqtr4d 2767 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦)) |
13 | 12 | rgen2 3189 | . 2 β’ βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦) |
14 | ax-hfi 30804 | . . 3 β’ Β·ih :( β Γ β)βΆβ | |
15 | 4, 8 | ipf 30438 | . . . 4 β’ (π β NrmCVec β (Β·πOLDβπ):( β Γ β)βΆβ) |
16 | 3, 15 | ax-mp 5 | . . 3 β’ (Β·πOLDβπ):( β Γ β)βΆβ |
17 | ffn 6708 | . . . 4 β’ ( Β·ih :( β Γ β)βΆβ β Β·ih Fn ( β Γ β)) | |
18 | ffn 6708 | . . . 4 β’ ((Β·πOLDβπ):( β Γ β)βΆβ β (Β·πOLDβπ) Fn ( β Γ β)) | |
19 | eqfnov2 7532 | . . . 4 β’ (( Β·ih Fn ( β Γ β) β§ (Β·πOLDβπ) Fn ( β Γ β)) β ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦))) | |
20 | 17, 18, 19 | syl2an 595 | . . 3 β’ (( Β·ih :( β Γ β)βΆβ β§ (Β·πOLDβπ):( β Γ β)βΆβ) β ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦))) |
21 | 14, 16, 20 | mp2an 689 | . 2 β’ ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦)) |
22 | 13, 21 | mpbir 230 | 1 β’ Β·ih = (Β·πOLDβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β¨cop 4627 Γ cxp 5665 Fn wfn 6529 βΆwf 6530 βcfv 6534 (class class class)co 7402 βcc 11105 ici 11109 + caddc 11110 Β· cmul 11112 β cmin 11442 / cdiv 11869 2c2 12265 4c4 12267 βcexp 14025 NrmCVeccnv 30309 Β·πOLDcdip 30425 βchba 30644 +β cva 30645 Β·β csm 30646 Β·ih csp 30647 normβcno 30648 ββ cmv 30650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-hilex 30724 ax-hfvadd 30725 ax-hvcom 30726 ax-hvass 30727 ax-hv0cl 30728 ax-hvaddid 30729 ax-hfvmul 30730 ax-hvmulid 30731 ax-hvmulass 30732 ax-hvdistr1 30733 ax-hvdistr2 30734 ax-hvmul0 30735 ax-hfi 30804 ax-his1 30807 ax-his2 30808 ax-his3 30809 ax-his4 30810 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-fz 13483 df-fzo 13626 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-sum 15631 df-grpo 30218 df-gid 30219 df-ginv 30220 df-gdiv 30221 df-ablo 30270 df-vc 30284 df-nv 30317 df-va 30320 df-ba 30321 df-sm 30322 df-0v 30323 df-vs 30324 df-nmcv 30325 df-dip 30426 df-hnorm 30693 df-hvsub 30696 |
This theorem is referenced by: bcsiHIL 30905 occllem 31028 hmopbdoptHIL 31713 |
Copyright terms: Public domain | W3C validator |