Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhip | ⊢ ·ih = (·𝑖OLD‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 29240 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29246 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | 2 | hhba 29248 | . . . . . 6 ⊢ ℋ = (BaseSet‘𝑈) |
5 | 2 | hhva 29247 | . . . . . 6 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 2 | hhsm 29250 | . . . . . 6 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | 2 | hhnm 29252 | . . . . . 6 ⊢ normℎ = (normCV‘𝑈) |
8 | eqid 2737 | . . . . . 6 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
9 | 2 | hhvs 29251 | . . . . . 6 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 28790 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
11 | 3, 10 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
12 | 1, 11 | eqtr4d 2780 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
13 | 12 | rgen2 3124 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦) |
14 | ax-hfi 29160 | . . 3 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
15 | 4, 8 | ipf 28794 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) |
16 | 3, 15 | ax-mp 5 | . . 3 ⊢ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ |
17 | ffn 6545 | . . . 4 ⊢ ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ)) | |
18 | ffn 6545 | . . . 4 ⊢ ((·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) | |
19 | eqfnov2 7340 | . . . 4 ⊢ (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) | |
20 | 17, 18, 19 | syl2an 599 | . . 3 ⊢ (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) |
21 | 14, 16, 20 | mp2an 692 | . 2 ⊢ ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
22 | 13, 21 | mpbir 234 | 1 ⊢ ·ih = (·𝑖OLD‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 〈cop 4547 × cxp 5549 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ici 10731 + caddc 10732 · cmul 10734 − cmin 11062 / cdiv 11489 2c2 11885 4c4 11887 ↑cexp 13635 NrmCVeccnv 28665 ·𝑖OLDcdip 28781 ℋchba 29000 +ℎ cva 29001 ·ℎ csm 29002 ·ih csp 29003 normℎcno 29004 −ℎ cmv 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-dip 28782 df-hnorm 29049 df-hvsub 29052 |
This theorem is referenced by: bcsiHIL 29261 occllem 29384 hmopbdoptHIL 30069 |
Copyright terms: Public domain | W3C validator |