HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhip Structured version   Visualization version   GIF version

Theorem hhip 29539
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhip ·ih = (·𝑖OLD𝑈)

Proof of Theorem hhip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polid 29521 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
2 hhnv.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 29527 . . . . 5 𝑈 ∈ NrmCVec
42hhba 29529 . . . . . 6 ℋ = (BaseSet‘𝑈)
52hhva 29528 . . . . . 6 + = ( +𝑣𝑈)
62hhsm 29531 . . . . . 6 · = ( ·𝑠OLD𝑈)
72hhnm 29533 . . . . . 6 norm = (normCV𝑈)
8 eqid 2738 . . . . . 6 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
92hhvs 29532 . . . . . 6 = ( −𝑣𝑈)
104, 5, 6, 7, 8, 9ipval3 29071 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
113, 10mp3an1 1447 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
121, 11eqtr4d 2781 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
1312rgen2 3120 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)
14 ax-hfi 29441 . . 3 ·ih :( ℋ × ℋ)⟶ℂ
154, 8ipf 29075 . . . 4 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ)
163, 15ax-mp 5 . . 3 (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ
17 ffn 6600 . . . 4 ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ))
18 ffn 6600 . . . 4 ((·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD𝑈) Fn ( ℋ × ℋ))
19 eqfnov2 7404 . . . 4 (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2017, 18, 19syl2an 596 . . 3 (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2114, 16, 20mp2an 689 . 2 ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
2213, 21mpbir 230 1 ·ih = (·𝑖OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  ici 10873   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  2c2 12028  4c4 12030  cexp 13782  NrmCVeccnv 28946  ·𝑖OLDcdip 29062  chba 29281   + cva 29282   · csm 29283   ·ih csp 29284  normcno 29285   cmv 29287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-dip 29063  df-hnorm 29330  df-hvsub 29333
This theorem is referenced by:  bcsiHIL  29542  occllem  29665  hmopbdoptHIL  30350
  Copyright terms: Public domain W3C validator