Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhip | ⊢ ·ih = (·𝑖OLD‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 29422 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29428 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | 2 | hhba 29430 | . . . . . 6 ⊢ ℋ = (BaseSet‘𝑈) |
5 | 2 | hhva 29429 | . . . . . 6 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 2 | hhsm 29432 | . . . . . 6 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | 2 | hhnm 29434 | . . . . . 6 ⊢ normℎ = (normCV‘𝑈) |
8 | eqid 2738 | . . . . . 6 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
9 | 2 | hhvs 29433 | . . . . . 6 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 28972 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
11 | 3, 10 | mp3an1 1446 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
12 | 1, 11 | eqtr4d 2781 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
13 | 12 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦) |
14 | ax-hfi 29342 | . . 3 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
15 | 4, 8 | ipf 28976 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) |
16 | 3, 15 | ax-mp 5 | . . 3 ⊢ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ |
17 | ffn 6584 | . . . 4 ⊢ ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ)) | |
18 | ffn 6584 | . . . 4 ⊢ ((·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) | |
19 | eqfnov2 7382 | . . . 4 ⊢ (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) | |
20 | 17, 18, 19 | syl2an 595 | . . 3 ⊢ (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) |
21 | 14, 16, 20 | mp2an 688 | . 2 ⊢ ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
22 | 13, 21 | mpbir 230 | 1 ⊢ ·ih = (·𝑖OLD‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 〈cop 4564 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ici 10804 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 2c2 11958 4c4 11960 ↑cexp 13710 NrmCVeccnv 28847 ·𝑖OLDcdip 28963 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 ·ih csp 29185 normℎcno 29186 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-dip 28964 df-hnorm 29231 df-hvsub 29234 |
This theorem is referenced by: bcsiHIL 29443 occllem 29566 hmopbdoptHIL 30251 |
Copyright terms: Public domain | W3C validator |