Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhip | ⊢ ·ih = (·𝑖OLD‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 29521 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29527 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | 2 | hhba 29529 | . . . . . 6 ⊢ ℋ = (BaseSet‘𝑈) |
5 | 2 | hhva 29528 | . . . . . 6 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 2 | hhsm 29531 | . . . . . 6 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | 2 | hhnm 29533 | . . . . . 6 ⊢ normℎ = (normCV‘𝑈) |
8 | eqid 2738 | . . . . . 6 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
9 | 2 | hhvs 29532 | . . . . . 6 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 29071 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
11 | 3, 10 | mp3an1 1447 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD‘𝑈)𝑦) = (((((normℎ‘(𝑥 +ℎ 𝑦))↑2) − ((normℎ‘(𝑥 −ℎ 𝑦))↑2)) + (i · (((normℎ‘(𝑥 +ℎ (i ·ℎ 𝑦)))↑2) − ((normℎ‘(𝑥 −ℎ (i ·ℎ 𝑦)))↑2)))) / 4)) |
12 | 1, 11 | eqtr4d 2781 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
13 | 12 | rgen2 3120 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦) |
14 | ax-hfi 29441 | . . 3 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
15 | 4, 8 | ipf 29075 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) |
16 | 3, 15 | ax-mp 5 | . . 3 ⊢ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ |
17 | ffn 6600 | . . . 4 ⊢ ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ)) | |
18 | ffn 6600 | . . . 4 ⊢ ((·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) | |
19 | eqfnov2 7404 | . . . 4 ⊢ (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD‘𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) | |
20 | 17, 18, 19 | syl2an 596 | . . 3 ⊢ (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD‘𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦))) |
21 | 14, 16, 20 | mp2an 689 | . 2 ⊢ ( ·ih = (·𝑖OLD‘𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD‘𝑈)𝑦)) |
22 | 13, 21 | mpbir 230 | 1 ⊢ ·ih = (·𝑖OLD‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 × cxp 5587 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ici 10873 + caddc 10874 · cmul 10876 − cmin 11205 / cdiv 11632 2c2 12028 4c4 12030 ↑cexp 13782 NrmCVeccnv 28946 ·𝑖OLDcdip 29062 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 ·ih csp 29284 normℎcno 29285 −ℎ cmv 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-dip 29063 df-hnorm 29330 df-hvsub 29333 |
This theorem is referenced by: bcsiHIL 29542 occllem 29665 hmopbdoptHIL 30350 |
Copyright terms: Public domain | W3C validator |