![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhip | Structured version Visualization version GIF version |
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
Ref | Expression |
---|---|
hhip | β’ Β·ih = (Β·πOLDβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid 30399 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ Β·ih π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) | |
2 | hhnv.1 | . . . . . 6 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
3 | 2 | hhnv 30405 | . . . . 5 β’ π β NrmCVec |
4 | 2 | hhba 30407 | . . . . . 6 β’ β = (BaseSetβπ) |
5 | 2 | hhva 30406 | . . . . . 6 β’ +β = ( +π£ βπ) |
6 | 2 | hhsm 30409 | . . . . . 6 β’ Β·β = ( Β·π OLD βπ) |
7 | 2 | hhnm 30411 | . . . . . 6 β’ normβ = (normCVβπ) |
8 | eqid 2732 | . . . . . 6 β’ (Β·πOLDβπ) = (Β·πOLDβπ) | |
9 | 2 | hhvs 30410 | . . . . . 6 β’ ββ = ( βπ£ βπ) |
10 | 4, 5, 6, 7, 8, 9 | ipval3 29949 | . . . . 5 β’ ((π β NrmCVec β§ π₯ β β β§ π¦ β β) β (π₯(Β·πOLDβπ)π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) |
11 | 3, 10 | mp3an1 1448 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(Β·πOLDβπ)π¦) = (((((normββ(π₯ +β π¦))β2) β ((normββ(π₯ ββ π¦))β2)) + (i Β· (((normββ(π₯ +β (i Β·β π¦)))β2) β ((normββ(π₯ ββ (i Β·β π¦)))β2)))) / 4)) |
12 | 1, 11 | eqtr4d 2775 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦)) |
13 | 12 | rgen2 3197 | . 2 β’ βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦) |
14 | ax-hfi 30319 | . . 3 β’ Β·ih :( β Γ β)βΆβ | |
15 | 4, 8 | ipf 29953 | . . . 4 β’ (π β NrmCVec β (Β·πOLDβπ):( β Γ β)βΆβ) |
16 | 3, 15 | ax-mp 5 | . . 3 β’ (Β·πOLDβπ):( β Γ β)βΆβ |
17 | ffn 6714 | . . . 4 β’ ( Β·ih :( β Γ β)βΆβ β Β·ih Fn ( β Γ β)) | |
18 | ffn 6714 | . . . 4 β’ ((Β·πOLDβπ):( β Γ β)βΆβ β (Β·πOLDβπ) Fn ( β Γ β)) | |
19 | eqfnov2 7535 | . . . 4 β’ (( Β·ih Fn ( β Γ β) β§ (Β·πOLDβπ) Fn ( β Γ β)) β ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦))) | |
20 | 17, 18, 19 | syl2an 596 | . . 3 β’ (( Β·ih :( β Γ β)βΆβ β§ (Β·πOLDβπ):( β Γ β)βΆβ) β ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦))) |
21 | 14, 16, 20 | mp2an 690 | . 2 β’ ( Β·ih = (Β·πOLDβπ) β βπ₯ β β βπ¦ β β (π₯ Β·ih π¦) = (π₯(Β·πOLDβπ)π¦)) |
22 | 13, 21 | mpbir 230 | 1 β’ Β·ih = (Β·πOLDβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β¨cop 4633 Γ cxp 5673 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 ici 11108 + caddc 11109 Β· cmul 11111 β cmin 11440 / cdiv 11867 2c2 12263 4c4 12265 βcexp 14023 NrmCVeccnv 29824 Β·πOLDcdip 29940 βchba 30159 +β cva 30160 Β·β csm 30161 Β·ih csp 30162 normβcno 30163 ββ cmv 30165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-hilex 30239 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvmulass 30247 ax-hvdistr1 30248 ax-hvdistr2 30249 ax-hvmul0 30250 ax-hfi 30319 ax-his1 30322 ax-his2 30323 ax-his3 30324 ax-his4 30325 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-dip 29941 df-hnorm 30208 df-hvsub 30211 |
This theorem is referenced by: bcsiHIL 30420 occllem 30543 hmopbdoptHIL 31228 |
Copyright terms: Public domain | W3C validator |