HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhip Structured version   Visualization version   GIF version

Theorem hhip 29440
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhip ·ih = (·𝑖OLD𝑈)

Proof of Theorem hhip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polid 29422 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
2 hhnv.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 29428 . . . . 5 𝑈 ∈ NrmCVec
42hhba 29430 . . . . . 6 ℋ = (BaseSet‘𝑈)
52hhva 29429 . . . . . 6 + = ( +𝑣𝑈)
62hhsm 29432 . . . . . 6 · = ( ·𝑠OLD𝑈)
72hhnm 29434 . . . . . 6 norm = (normCV𝑈)
8 eqid 2738 . . . . . 6 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
92hhvs 29433 . . . . . 6 = ( −𝑣𝑈)
104, 5, 6, 7, 8, 9ipval3 28972 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
113, 10mp3an1 1446 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
121, 11eqtr4d 2781 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
1312rgen2 3126 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)
14 ax-hfi 29342 . . 3 ·ih :( ℋ × ℋ)⟶ℂ
154, 8ipf 28976 . . . 4 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ)
163, 15ax-mp 5 . . 3 (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ
17 ffn 6584 . . . 4 ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ))
18 ffn 6584 . . . 4 ((·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD𝑈) Fn ( ℋ × ℋ))
19 eqfnov2 7382 . . . 4 (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2017, 18, 19syl2an 595 . . 3 (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2114, 16, 20mp2an 688 . 2 ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
2213, 21mpbir 230 1 ·ih = (·𝑖OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cop 4564   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  ici 10804   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  2c2 11958  4c4 11960  cexp 13710  NrmCVeccnv 28847  ·𝑖OLDcdip 28963  chba 29182   + cva 29183   · csm 29184   ·ih csp 29185  normcno 29186   cmv 29188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-dip 28964  df-hnorm 29231  df-hvsub 29234
This theorem is referenced by:  bcsiHIL  29443  occllem  29566  hmopbdoptHIL  30251
  Copyright terms: Public domain W3C validator