![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsinvgd2 | Structured version Visualization version GIF version |
Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
prdsinvgd2.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsinvgd2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsinvgd2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsinvgd2.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
prdsinvgd2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsinvgd2.n | ⊢ 𝑁 = (invg‘𝑌) |
prdsinvgd2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
prdsinvgd2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
prdsinvgd2 | ⊢ (𝜑 → ((𝑁‘𝑋)‘𝐽) = ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsinvgd2.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsinvgd2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | prdsinvgd2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsinvgd2.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
5 | prdsinvgd2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
6 | prdsinvgd2.n | . . . 4 ⊢ 𝑁 = (invg‘𝑌) | |
7 | prdsinvgd2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | prdsinvgd 18930 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) |
9 | 8 | fveq1d 6890 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋)‘𝐽) = ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))‘𝐽)) |
10 | prdsinvgd2.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
11 | 2fveq3 6893 | . . . . 5 ⊢ (𝑥 = 𝐽 → (invg‘(𝑅‘𝑥)) = (invg‘(𝑅‘𝐽))) | |
12 | fveq2 6888 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑋‘𝑥) = (𝑋‘𝐽)) | |
13 | 11, 12 | fveq12d 6895 | . . . 4 ⊢ (𝑥 = 𝐽 → ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)) = ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽))) |
14 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) | |
15 | fvex 6901 | . . . 4 ⊢ ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽)) ∈ V | |
16 | 13, 14, 15 | fvmpt 6995 | . . 3 ⊢ (𝐽 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))‘𝐽) = ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽))) |
17 | 10, 16 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))‘𝐽) = ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽))) |
18 | 9, 17 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑁‘𝑋)‘𝐽) = ((invg‘(𝑅‘𝐽))‘(𝑋‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5230 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 Xscprds 17387 Grpcgrp 18815 invgcminusg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 |
This theorem is referenced by: dsmmsubg 21289 |
Copyright terms: Public domain | W3C validator |