MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvgd2 Structured version   Visualization version   GIF version

Theorem prdsinvgd2 20859
Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
prdsinvgd2.y 𝑌 = (𝑆Xs𝑅)
prdsinvgd2.i (𝜑𝐼𝑊)
prdsinvgd2.s (𝜑𝑆𝑉)
prdsinvgd2.r (𝜑𝑅:𝐼⟶Grp)
prdsinvgd2.b 𝐵 = (Base‘𝑌)
prdsinvgd2.n 𝑁 = (invg𝑌)
prdsinvgd2.x (𝜑𝑋𝐵)
prdsinvgd2.j (𝜑𝐽𝐼)
Assertion
Ref Expression
prdsinvgd2 (𝜑 → ((𝑁𝑋)‘𝐽) = ((invg‘(𝑅𝐽))‘(𝑋𝐽)))

Proof of Theorem prdsinvgd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvgd2.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 prdsinvgd2.i . . . 4 (𝜑𝐼𝑊)
3 prdsinvgd2.s . . . 4 (𝜑𝑆𝑉)
4 prdsinvgd2.r . . . 4 (𝜑𝑅:𝐼⟶Grp)
5 prdsinvgd2.b . . . 4 𝐵 = (Base‘𝑌)
6 prdsinvgd2.n . . . 4 𝑁 = (invg𝑌)
7 prdsinvgd2.x . . . 4 (𝜑𝑋𝐵)
81, 2, 3, 4, 5, 6, 7prdsinvgd 18601 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))))
98fveq1d 6758 . 2 (𝜑 → ((𝑁𝑋)‘𝐽) = ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))‘𝐽))
10 prdsinvgd2.j . . 3 (𝜑𝐽𝐼)
11 2fveq3 6761 . . . . 5 (𝑥 = 𝐽 → (invg‘(𝑅𝑥)) = (invg‘(𝑅𝐽)))
12 fveq2 6756 . . . . 5 (𝑥 = 𝐽 → (𝑋𝑥) = (𝑋𝐽))
1311, 12fveq12d 6763 . . . 4 (𝑥 = 𝐽 → ((invg‘(𝑅𝑥))‘(𝑋𝑥)) = ((invg‘(𝑅𝐽))‘(𝑋𝐽)))
14 eqid 2738 . . . 4 (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))
15 fvex 6769 . . . 4 ((invg‘(𝑅𝐽))‘(𝑋𝐽)) ∈ V
1613, 14, 15fvmpt 6857 . . 3 (𝐽𝐼 → ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))‘𝐽) = ((invg‘(𝑅𝐽))‘(𝑋𝐽)))
1710, 16syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))‘𝐽) = ((invg‘(𝑅𝐽))‘(𝑋𝐽)))
189, 17eqtrd 2778 1 (𝜑 → ((𝑁𝑋)‘𝐽) = ((invg‘(𝑅𝐽))‘(𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Xscprds 17073  Grpcgrp 18492  invgcminusg 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496
This theorem is referenced by:  dsmmsubg  20860
  Copyright terms: Public domain W3C validator