![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version |
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsvscacl.y | β’ π = (πXsπ ) |
prdsvscacl.b | β’ π΅ = (Baseβπ) |
prdsvscacl.t | β’ Β· = ( Β·π βπ) |
prdsvscacl.k | β’ πΎ = (Baseβπ) |
prdsvscacl.s | β’ (π β π β Ring) |
prdsvscacl.i | β’ (π β πΌ β π) |
prdsvscacl.r | β’ (π β π :πΌβΆLMod) |
prdsvscacl.f | β’ (π β πΉ β πΎ) |
prdsvscacl.g | β’ (π β πΊ β π΅) |
prdsvscacl.sr | β’ ((π β§ π₯ β πΌ) β (Scalarβ(π βπ₯)) = π) |
Ref | Expression |
---|---|
prdsvscacl | β’ (π β (πΉ Β· πΊ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsvscacl.y | . . 3 β’ π = (πXsπ ) | |
2 | prdsvscacl.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | prdsvscacl.t | . . 3 β’ Β· = ( Β·π βπ) | |
4 | prdsvscacl.k | . . 3 β’ πΎ = (Baseβπ) | |
5 | prdsvscacl.s | . . 3 β’ (π β π β Ring) | |
6 | prdsvscacl.i | . . 3 β’ (π β πΌ β π) | |
7 | prdsvscacl.r | . . . 4 β’ (π β π :πΌβΆLMod) | |
8 | 7 | ffnd 6719 | . . 3 β’ (π β π Fn πΌ) |
9 | prdsvscacl.f | . . 3 β’ (π β πΉ β πΎ) | |
10 | prdsvscacl.g | . . 3 β’ (π β πΊ β π΅) | |
11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 17425 | . 2 β’ (π β (πΉ Β· πΊ) = (π₯ β πΌ β¦ (πΉ( Β·π β(π βπ₯))(πΊβπ₯)))) |
12 | 7 | ffvelcdmda 7087 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (π βπ₯) β LMod) |
13 | 9 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΉ β πΎ) |
14 | prdsvscacl.sr | . . . . . . . 8 β’ ((π β§ π₯ β πΌ) β (Scalarβ(π βπ₯)) = π) | |
15 | 14 | fveq2d 6896 | . . . . . . 7 β’ ((π β§ π₯ β πΌ) β (Baseβ(Scalarβ(π βπ₯))) = (Baseβπ)) |
16 | 15, 4 | eqtr4di 2791 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β (Baseβ(Scalarβ(π βπ₯))) = πΎ) |
17 | 13, 16 | eleqtrrd 2837 | . . . . 5 β’ ((π β§ π₯ β πΌ) β πΉ β (Baseβ(Scalarβ(π βπ₯)))) |
18 | 5 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π β Ring) |
19 | 6 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΌ β π) |
20 | 8 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π Fn πΌ) |
21 | 10 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΊ β π΅) |
22 | simpr 486 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π₯ β πΌ) | |
23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 17418 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (πΊβπ₯) β (Baseβ(π βπ₯))) |
24 | eqid 2733 | . . . . . 6 β’ (Baseβ(π βπ₯)) = (Baseβ(π βπ₯)) | |
25 | eqid 2733 | . . . . . 6 β’ (Scalarβ(π βπ₯)) = (Scalarβ(π βπ₯)) | |
26 | eqid 2733 | . . . . . 6 β’ ( Β·π β(π βπ₯)) = ( Β·π β(π βπ₯)) | |
27 | eqid 2733 | . . . . . 6 β’ (Baseβ(Scalarβ(π βπ₯))) = (Baseβ(Scalarβ(π βπ₯))) | |
28 | 24, 25, 26, 27 | lmodvscl 20489 | . . . . 5 β’ (((π βπ₯) β LMod β§ πΉ β (Baseβ(Scalarβ(π βπ₯))) β§ (πΊβπ₯) β (Baseβ(π βπ₯))) β (πΉ( Β·π β(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
29 | 12, 17, 23, 28 | syl3anc 1372 | . . . 4 β’ ((π β§ π₯ β πΌ) β (πΉ( Β·π β(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
30 | 29 | ralrimiva 3147 | . . 3 β’ (π β βπ₯ β πΌ (πΉ( Β·π β(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
31 | 1, 2, 5, 6, 8 | prdsbasmpt 17416 | . . 3 β’ (π β ((π₯ β πΌ β¦ (πΉ( Β·π β(π βπ₯))(πΊβπ₯))) β π΅ β βπ₯ β πΌ (πΉ( Β·π β(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯)))) |
32 | 30, 31 | mpbird 257 | . 2 β’ (π β (π₯ β πΌ β¦ (πΉ( Β·π β(π βπ₯))(πΊβπ₯))) β π΅) |
33 | 11, 32 | eqeltrd 2834 | 1 β’ (π β (πΉ Β· πΊ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 β¦ cmpt 5232 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7409 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 Xscprds 17391 Ringcrg 20056 LModclmod 20471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-prds 17393 df-lmod 20473 |
This theorem is referenced by: prdslmodd 20580 |
Copyright terms: Public domain | W3C validator |