Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version |
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsvscacl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsvscacl.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscacl.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscacl.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscacl.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
prdsvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscacl.r | ⊢ (𝜑 → 𝑅:𝐼⟶LMod) |
prdsvscacl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscacl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsvscacl.sr | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) |
Ref | Expression |
---|---|
prdsvscacl | ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsvscacl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
4 | prdsvscacl.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
5 | prdsvscacl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
6 | prdsvscacl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | prdsvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | |
8 | 7 | ffnd 6631 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
9 | prdsvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
10 | prdsvscacl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 17239 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
12 | 7 | ffvelcdmda 6993 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ LMod) |
13 | 9 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐾) |
14 | prdsvscacl.sr | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | |
15 | 14 | fveq2d 6808 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘𝑆)) |
16 | 15, 4 | eqtr4di 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = 𝐾) |
17 | 13, 16 | eleqtrrd 2840 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥)))) |
18 | 5 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ Ring) |
19 | 6 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
20 | 8 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
21 | 10 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
22 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 17232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
24 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
25 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘(𝑅‘𝑥)) = (Scalar‘(𝑅‘𝑥)) | |
26 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)) | |
27 | eqid 2736 | . . . . . 6 ⊢ (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘(Scalar‘(𝑅‘𝑥))) | |
28 | 24, 25, 26, 27 | lmodvscl 20189 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥))) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
29 | 12, 17, 23, 28 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
30 | 29 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
31 | 1, 2, 5, 6, 8 | prdsbasmpt 17230 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
32 | 30, 31 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
33 | 11, 32 | eqeltrd 2837 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ↦ cmpt 5164 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 Scalarcsca 17014 ·𝑠 cvsca 17015 Xscprds 17205 Ringcrg 19832 LModclmod 20172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-slot 16932 df-ndx 16944 df-base 16962 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-hom 17035 df-cco 17036 df-prds 17207 df-lmod 20174 |
This theorem is referenced by: prdslmodd 20280 |
Copyright terms: Public domain | W3C validator |