![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version |
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsvscacl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsvscacl.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscacl.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscacl.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscacl.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
prdsvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscacl.r | ⊢ (𝜑 → 𝑅:𝐼⟶LMod) |
prdsvscacl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscacl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsvscacl.sr | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) |
Ref | Expression |
---|---|
prdsvscacl | ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsvscacl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
4 | prdsvscacl.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
5 | prdsvscacl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
6 | prdsvscacl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | prdsvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | |
8 | 7 | ffnd 6724 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
9 | prdsvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
10 | prdsvscacl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 17469 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
12 | 7 | ffvelcdmda 7093 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ LMod) |
13 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐾) |
14 | prdsvscacl.sr | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | |
15 | 14 | fveq2d 6900 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘𝑆)) |
16 | 15, 4 | eqtr4di 2783 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = 𝐾) |
17 | 13, 16 | eleqtrrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥)))) |
18 | 5 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ Ring) |
19 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
20 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
21 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
22 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 17462 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
24 | eqid 2725 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
25 | eqid 2725 | . . . . . 6 ⊢ (Scalar‘(𝑅‘𝑥)) = (Scalar‘(𝑅‘𝑥)) | |
26 | eqid 2725 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)) | |
27 | eqid 2725 | . . . . . 6 ⊢ (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘(Scalar‘(𝑅‘𝑥))) | |
28 | 24, 25, 26, 27 | lmodvscl 20778 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥))) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
29 | 12, 17, 23, 28 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
30 | 29 | ralrimiva 3135 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
31 | 1, 2, 5, 6, 8 | prdsbasmpt 17460 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
32 | 30, 31 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
33 | 11, 32 | eqeltrd 2825 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ↦ cmpt 5232 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 Scalarcsca 17244 ·𝑠 cvsca 17245 Xscprds 17435 Ringcrg 20190 LModclmod 20760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17189 df-plusg 17254 df-mulr 17255 df-sca 17257 df-vsca 17258 df-ip 17259 df-tset 17260 df-ple 17261 df-ds 17263 df-hom 17265 df-cco 17266 df-prds 17437 df-lmod 20762 |
This theorem is referenced by: prdslmodd 20870 |
Copyright terms: Public domain | W3C validator |