|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version | ||
| Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| prdsvscacl.y | ⊢ 𝑌 = (𝑆Xs𝑅) | 
| prdsvscacl.b | ⊢ 𝐵 = (Base‘𝑌) | 
| prdsvscacl.t | ⊢ · = ( ·𝑠 ‘𝑌) | 
| prdsvscacl.k | ⊢ 𝐾 = (Base‘𝑆) | 
| prdsvscacl.s | ⊢ (𝜑 → 𝑆 ∈ Ring) | 
| prdsvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| prdsvscacl.r | ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | 
| prdsvscacl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) | 
| prdsvscacl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) | 
| prdsvscacl.sr | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | 
| Ref | Expression | 
|---|---|
| prdsvscacl | ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsvscacl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdsvscacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 4 | prdsvscacl.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | prdsvscacl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 6 | prdsvscacl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | prdsvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | |
| 8 | 7 | ffnd 6736 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) | 
| 9 | prdsvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
| 10 | prdsvscacl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 17525 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) | 
| 12 | 7 | ffvelcdmda 7103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ LMod) | 
| 13 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐾) | 
| 14 | prdsvscacl.sr | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | |
| 15 | 14 | fveq2d 6909 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘𝑆)) | 
| 16 | 15, 4 | eqtr4di 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = 𝐾) | 
| 17 | 13, 16 | eleqtrrd 2843 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥)))) | 
| 18 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ Ring) | 
| 19 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) | 
| 20 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) | 
| 21 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) | 
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 17518 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) | 
| 24 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 25 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘(𝑅‘𝑥)) = (Scalar‘(𝑅‘𝑥)) | |
| 26 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)) | |
| 27 | eqid 2736 | . . . . . 6 ⊢ (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘(Scalar‘(𝑅‘𝑥))) | |
| 28 | 24, 25, 26, 27 | lmodvscl 20877 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥))) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) | 
| 29 | 12, 17, 23, 28 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) | 
| 30 | 29 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) | 
| 31 | 1, 2, 5, 6, 8 | prdsbasmpt 17516 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) | 
| 32 | 30, 31 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) | 
| 33 | 11, 32 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ↦ cmpt 5224 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Scalarcsca 17301 ·𝑠 cvsca 17302 Xscprds 17491 Ringcrg 20231 LModclmod 20859 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-prds 17493 df-lmod 20861 | 
| This theorem is referenced by: prdslmodd 20968 | 
| Copyright terms: Public domain | W3C validator |