Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version |
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsvscacl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsvscacl.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscacl.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscacl.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscacl.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
prdsvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscacl.r | ⊢ (𝜑 → 𝑅:𝐼⟶LMod) |
prdsvscacl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscacl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsvscacl.sr | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) |
Ref | Expression |
---|---|
prdsvscacl | ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsvscacl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
4 | prdsvscacl.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
5 | prdsvscacl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
6 | prdsvscacl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | prdsvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | |
8 | 7 | ffnd 6597 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
9 | prdsvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
10 | prdsvscacl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 17171 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
12 | 7 | ffvelrnda 6955 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ LMod) |
13 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐾) |
14 | prdsvscacl.sr | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | |
15 | 14 | fveq2d 6772 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘𝑆)) |
16 | 15, 4 | eqtr4di 2797 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = 𝐾) |
17 | 13, 16 | eleqtrrd 2843 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥)))) |
18 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ Ring) |
19 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
20 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
21 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
22 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 17164 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
24 | eqid 2739 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
25 | eqid 2739 | . . . . . 6 ⊢ (Scalar‘(𝑅‘𝑥)) = (Scalar‘(𝑅‘𝑥)) | |
26 | eqid 2739 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)) | |
27 | eqid 2739 | . . . . . 6 ⊢ (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘(Scalar‘(𝑅‘𝑥))) | |
28 | 24, 25, 26, 27 | lmodvscl 20121 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥))) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
29 | 12, 17, 23, 28 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
30 | 29 | ralrimiva 3109 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
31 | 1, 2, 5, 6, 8 | prdsbasmpt 17162 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
32 | 30, 31 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
33 | 11, 32 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ↦ cmpt 5161 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 Xscprds 17137 Ringcrg 19764 LModclmod 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-prds 17139 df-lmod 20106 |
This theorem is referenced by: prdslmodd 20212 |
Copyright terms: Public domain | W3C validator |