Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsvscacl | Structured version Visualization version GIF version |
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsvscacl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsvscacl.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscacl.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscacl.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscacl.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
prdsvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscacl.r | ⊢ (𝜑 → 𝑅:𝐼⟶LMod) |
prdsvscacl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscacl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsvscacl.sr | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) |
Ref | Expression |
---|---|
prdsvscacl | ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsvscacl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
4 | prdsvscacl.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
5 | prdsvscacl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
6 | prdsvscacl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | prdsvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶LMod) | |
8 | 7 | ffnd 6506 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
9 | prdsvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
10 | prdsvscacl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 8, 9, 10 | prdsvscaval 16856 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
12 | 7 | ffvelrnda 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ LMod) |
13 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐾) |
14 | prdsvscacl.sr | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) | |
15 | 14 | fveq2d 6679 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘𝑆)) |
16 | 15, 4 | eqtr4di 2791 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑥))) = 𝐾) |
17 | 13, 16 | eleqtrrd 2836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥)))) |
18 | 5 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ Ring) |
19 | 6 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
20 | 8 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
21 | 10 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
22 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
23 | 1, 2, 18, 19, 20, 21, 22 | prdsbasprj 16849 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
24 | eqid 2738 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
25 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘(𝑅‘𝑥)) = (Scalar‘(𝑅‘𝑥)) | |
26 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)) | |
27 | eqid 2738 | . . . . . 6 ⊢ (Base‘(Scalar‘(𝑅‘𝑥))) = (Base‘(Scalar‘(𝑅‘𝑥))) | |
28 | 24, 25, 26, 27 | lmodvscl 19771 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘(𝑅‘𝑥))) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
29 | 12, 17, 23, 28 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
30 | 29 | ralrimiva 3096 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
31 | 1, 2, 5, 6, 8 | prdsbasmpt 16847 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
32 | 30, 31 | mpbird 260 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
33 | 11, 32 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ↦ cmpt 5111 Fn wfn 6335 ⟶wf 6336 ‘cfv 6340 (class class class)co 7171 Basecbs 16587 Scalarcsca 16672 ·𝑠 cvsca 16673 Xscprds 16823 Ringcrg 19417 LModclmod 19754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-er 8321 df-map 8440 df-ixp 8509 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-sup 8980 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-9 11787 df-n0 11978 df-z 12064 df-dec 12181 df-uz 12326 df-fz 12983 df-struct 16589 df-ndx 16590 df-slot 16591 df-base 16593 df-plusg 16682 df-mulr 16683 df-sca 16685 df-vsca 16686 df-ip 16687 df-tset 16688 df-ple 16689 df-ds 16691 df-hom 16693 df-cco 16694 df-prds 16825 df-lmod 19756 |
This theorem is referenced by: prdslmodd 19861 |
Copyright terms: Public domain | W3C validator |