| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resccatlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resccat 49056. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| resccat.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| resccat.b | ⊢ 𝐵 = (Base‘𝐶) |
| resccat.s | ⊢ 𝑆 = (Base‘𝐸) |
| resccat.j | ⊢ 𝐽 = (Homf ‘𝐸) |
| resccat.x | ⊢ · = (comp‘𝐶) |
| resccat.xb | ⊢ ∙ = (comp‘𝐸) |
| resccat.1 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| resccat.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| resccat.ss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| resccatlem.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| resccatlem | ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resccat.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | resccat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | resccatlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 4 | resccat.j | . . . . . 6 ⊢ 𝐽 = (Homf ‘𝐸) | |
| 5 | resccat.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐸) | |
| 6 | 4, 5 | homffn 17634 | . . . . 5 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 8 | resccat.ss | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 9 | 1, 2, 3, 7, 8 | reschomf 17773 | . . 3 ⊢ (𝜑 → 𝐽 = (Homf ‘𝐷)) |
| 10 | 9, 4 | eqtr3di 2779 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
| 11 | resccat.1 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) | |
| 12 | 11 | ralrimivva 3178 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| 13 | 12 | ralrimivvva 3181 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| 14 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 15 | resccat.xb | . . . . 5 ⊢ ∙ = (comp‘𝐸) | |
| 16 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | 1, 2, 3, 7, 8 | rescbas 17771 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| 18 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
| 19 | 14, 15, 16, 17, 18, 10 | comfeq 17647 | . . . 4 ⊢ (𝜑 → ((compf‘𝐷) = (compf‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 20 | 1, 2, 3, 7, 8 | reschom 17772 | . . . . . . 7 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
| 21 | 20 | oveqd 7386 | . . . . . 6 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 22 | 20 | oveqd 7386 | . . . . . . 7 ⊢ (𝜑 → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧)) |
| 23 | resccat.x | . . . . . . . . . . 11 ⊢ · = (comp‘𝐶) | |
| 24 | 1, 2, 3, 7, 8, 23 | rescco 17774 | . . . . . . . . . 10 ⊢ (𝜑 → · = (comp‘𝐷)) |
| 25 | 24 | oveqd 7386 | . . . . . . . . 9 ⊢ (𝜑 → (〈𝑥, 𝑦〉 · 𝑧) = (〈𝑥, 𝑦〉(comp‘𝐷)𝑧)) |
| 26 | 25 | oveqd 7386 | . . . . . . . 8 ⊢ (𝜑 → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 27 | 26 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝜑 → ((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓) ↔ (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 28 | 22, 27 | raleqbidv 3316 | . . . . . 6 ⊢ (𝜑 → (∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 29 | 21, 28 | raleqbidv 3316 | . . . . 5 ⊢ (𝜑 → (∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 30 | 29 | 3ralbidv 3202 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 31 | 19, 30 | bitr4d 282 | . . 3 ⊢ (𝜑 → ((compf‘𝐷) = (compf‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) |
| 32 | 13, 31 | mpbird 257 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
| 33 | 1 | ovexi 7403 | . . 3 ⊢ 𝐷 ∈ V |
| 34 | 33 | a1i 11 | . 2 ⊢ (𝜑 → 𝐷 ∈ V) |
| 35 | resccat.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 36 | 10, 32, 34, 35 | catpropd 17650 | 1 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 〈cop 4591 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17605 Homf chomf 17607 compfccomf 17608 ↾cat cresc 17750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-hom 17220 df-cco 17221 df-cat 17609 df-homf 17611 df-comf 17612 df-resc 17753 |
| This theorem is referenced by: resccat 49056 |
| Copyright terms: Public domain | W3C validator |