Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcco Structured version   Visualization version   GIF version

Theorem ringcco 42538
Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcco.c 𝐶 = (RingCat‘𝑈)
ringcco.u (𝜑𝑈𝑉)
ringcco.o · = (comp‘𝐶)
ringcco.x (𝜑𝑋𝑈)
ringcco.y (𝜑𝑌𝑈)
ringcco.z (𝜑𝑍𝑈)
ringcco.f (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
ringcco.g (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
Assertion
Ref Expression
ringcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem ringcco
StepHypRef Expression
1 ringcco.c . . . . 5 𝐶 = (RingCat‘𝑈)
2 ringcco.u . . . . 5 (𝜑𝑈𝑉)
3 ringcco.o . . . . 5 · = (comp‘𝐶)
41, 2, 3ringccofval 42537 . . . 4 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
54oveqd 6808 . . 3 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍))
65oveqd 6808 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹))
7 eqid 2771 . . 3 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqid 2771 . . 3 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
9 ringcco.x . . 3 (𝜑𝑋𝑈)
10 ringcco.y . . 3 (𝜑𝑌𝑈)
11 ringcco.z . . 3 (𝜑𝑍𝑈)
12 eqid 2771 . . 3 (Base‘𝑋) = (Base‘𝑋)
13 eqid 2771 . . 3 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2771 . . 3 (Base‘𝑍) = (Base‘𝑍)
15 ringcco.f . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
16 ringcco.g . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
177, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16estrcco 16970 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺𝐹))
186, 17eqtrd 2805 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4322  ccom 5253  wf 6025  cfv 6029  (class class class)co 6791  Basecbs 16057  compcco 16154  ExtStrCatcestrc 16962  RingCatcringc 42524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-fz 12527  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-hom 16167  df-cco 16168  df-0g 16303  df-resc 16671  df-estrc 16963  df-mhm 17536  df-ghm 17859  df-mgp 18691  df-ur 18703  df-ring 18750  df-rnghom 18918  df-ringc 42526
This theorem is referenced by:  ringcsect  42552  funcringcsetcALTV2lem9  42565
  Copyright terms: Public domain W3C validator