Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcco Structured version   Visualization version   GIF version

Theorem ringcco 44572
 Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcco.c 𝐶 = (RingCat‘𝑈)
ringcco.u (𝜑𝑈𝑉)
ringcco.o · = (comp‘𝐶)
ringcco.x (𝜑𝑋𝑈)
ringcco.y (𝜑𝑌𝑈)
ringcco.z (𝜑𝑍𝑈)
ringcco.f (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
ringcco.g (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
Assertion
Ref Expression
ringcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem ringcco
StepHypRef Expression
1 ringcco.c . . . . 5 𝐶 = (RingCat‘𝑈)
2 ringcco.u . . . . 5 (𝜑𝑈𝑉)
3 ringcco.o . . . . 5 · = (comp‘𝐶)
41, 2, 3ringccofval 44571 . . . 4 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
54oveqd 7166 . . 3 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍))
65oveqd 7166 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹))
7 eqid 2824 . . 3 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqid 2824 . . 3 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
9 ringcco.x . . 3 (𝜑𝑋𝑈)
10 ringcco.y . . 3 (𝜑𝑌𝑈)
11 ringcco.z . . 3 (𝜑𝑍𝑈)
12 eqid 2824 . . 3 (Base‘𝑋) = (Base‘𝑋)
13 eqid 2824 . . 3 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2824 . . 3 (Base‘𝑍) = (Base‘𝑍)
15 ringcco.f . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
16 ringcco.g . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
177, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16estrcco 17380 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺𝐹))
186, 17eqtrd 2859 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ⟨cop 4556   ∘ ccom 5546  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  compcco 16577  ExtStrCatcestrc 17372  RingCatcringc 44558 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-hom 16589  df-cco 16590  df-0g 16715  df-resc 17081  df-estrc 17373  df-mhm 17956  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-rnghom 19470  df-ringc 44560 This theorem is referenced by:  ringcsect  44586  funcringcsetcALTV2lem9  44599
 Copyright terms: Public domain W3C validator