| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setc1ohomfval | Structured version Visualization version GIF version | ||
| Description: Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| funcsetc1o.1 | ⊢ 1 = (SetCat‘1o) |
| Ref | Expression |
|---|---|
| setc1ohomfval | ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4580 | . . 3 ⊢ 〈∅, ∅, 1o〉 = 〈〈∅, ∅〉, 1o〉 | |
| 2 | 1 | sneqi 4582 | . 2 ⊢ {〈∅, ∅, 1o〉} = {〈〈∅, ∅〉, 1o〉} |
| 3 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 1oex 8390 | . . 3 ⊢ 1o ∈ V | |
| 5 | funcsetc1o.1 | . . . . . . 7 ⊢ 1 = (SetCat‘1o) | |
| 6 | df1o2 8387 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 7 | 6 | fveq2i 6820 | . . . . . . 7 ⊢ (SetCat‘1o) = (SetCat‘{∅}) |
| 8 | 5, 7 | eqtri 2754 | . . . . . 6 ⊢ 1 = (SetCat‘{∅}) |
| 9 | p0ex 5317 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (⊤ → {∅} ∈ V) |
| 11 | eqid 2731 | . . . . . 6 ⊢ (Hom ‘ 1 ) = (Hom ‘ 1 ) | |
| 12 | 8, 10, 11 | setchomfval 17981 | . . . . 5 ⊢ (⊤ → (Hom ‘ 1 ) = (𝑥 ∈ {∅}, 𝑦 ∈ {∅} ↦ (𝑦 ↑m 𝑥))) |
| 13 | 12 | mptru 1548 | . . . 4 ⊢ (Hom ‘ 1 ) = (𝑥 ∈ {∅}, 𝑦 ∈ {∅} ↦ (𝑦 ↑m 𝑥)) |
| 14 | oveq2 7349 | . . . 4 ⊢ (𝑥 = ∅ → (𝑦 ↑m 𝑥) = (𝑦 ↑m ∅)) | |
| 15 | oveq1 7348 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑦 ↑m ∅) = (∅ ↑m ∅)) | |
| 16 | 0map0sn0 8804 | . . . . . 6 ⊢ (∅ ↑m ∅) = {∅} | |
| 17 | 16, 6 | eqtr4i 2757 | . . . . 5 ⊢ (∅ ↑m ∅) = 1o |
| 18 | 15, 17 | eqtrdi 2782 | . . . 4 ⊢ (𝑦 = ∅ → (𝑦 ↑m ∅) = 1o) |
| 19 | 13, 14, 18 | mposn 8028 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ V ∧ 1o ∈ V) → (Hom ‘ 1 ) = {〈〈∅, ∅〉, 1o〉}) |
| 20 | 3, 3, 4, 19 | mp3an 1463 | . 2 ⊢ (Hom ‘ 1 ) = {〈〈∅, ∅〉, 1o〉} |
| 21 | 2, 20 | eqtr4i 2757 | 1 ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 {csn 4571 〈cop 4577 〈cotp 4579 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1oc1o 8373 ↑m cmap 8745 Hom chom 17167 SetCatcsetc 17977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-setc 17978 |
| This theorem is referenced by: isinito2lem 49530 isinito3 49532 setc1onsubc 49634 |
| Copyright terms: Public domain | W3C validator |