| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setc1ohomfval | Structured version Visualization version GIF version | ||
| Description: Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| funcsetc1o.1 | ⊢ 1 = (SetCat‘1o) |
| Ref | Expression |
|---|---|
| setc1ohomfval | ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4594 | . . 3 ⊢ 〈∅, ∅, 1o〉 = 〈〈∅, ∅〉, 1o〉 | |
| 2 | 1 | sneqi 4596 | . 2 ⊢ {〈∅, ∅, 1o〉} = {〈〈∅, ∅〉, 1o〉} |
| 3 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 1oex 8421 | . . 3 ⊢ 1o ∈ V | |
| 5 | funcsetc1o.1 | . . . . . . 7 ⊢ 1 = (SetCat‘1o) | |
| 6 | df1o2 8418 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 7 | 6 | fveq2i 6843 | . . . . . . 7 ⊢ (SetCat‘1o) = (SetCat‘{∅}) |
| 8 | 5, 7 | eqtri 2752 | . . . . . 6 ⊢ 1 = (SetCat‘{∅}) |
| 9 | p0ex 5334 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (⊤ → {∅} ∈ V) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘ 1 ) = (Hom ‘ 1 ) | |
| 12 | 8, 10, 11 | setchomfval 18017 | . . . . 5 ⊢ (⊤ → (Hom ‘ 1 ) = (𝑥 ∈ {∅}, 𝑦 ∈ {∅} ↦ (𝑦 ↑m 𝑥))) |
| 13 | 12 | mptru 1547 | . . . 4 ⊢ (Hom ‘ 1 ) = (𝑥 ∈ {∅}, 𝑦 ∈ {∅} ↦ (𝑦 ↑m 𝑥)) |
| 14 | oveq2 7377 | . . . 4 ⊢ (𝑥 = ∅ → (𝑦 ↑m 𝑥) = (𝑦 ↑m ∅)) | |
| 15 | oveq1 7376 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑦 ↑m ∅) = (∅ ↑m ∅)) | |
| 16 | 0map0sn0 8835 | . . . . . 6 ⊢ (∅ ↑m ∅) = {∅} | |
| 17 | 16, 6 | eqtr4i 2755 | . . . . 5 ⊢ (∅ ↑m ∅) = 1o |
| 18 | 15, 17 | eqtrdi 2780 | . . . 4 ⊢ (𝑦 = ∅ → (𝑦 ↑m ∅) = 1o) |
| 19 | 13, 14, 18 | mposn 8059 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ V ∧ 1o ∈ V) → (Hom ‘ 1 ) = {〈〈∅, ∅〉, 1o〉}) |
| 20 | 3, 3, 4, 19 | mp3an 1463 | . 2 ⊢ (Hom ‘ 1 ) = {〈〈∅, ∅〉, 1o〉} |
| 21 | 2, 20 | eqtr4i 2755 | 1 ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {csn 4585 〈cop 4591 〈cotp 4593 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1oc1o 8404 ↑m cmap 8776 Hom chom 17207 SetCatcsetc 18013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-setc 18014 |
| This theorem is referenced by: isinito2lem 49460 isinito3 49462 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |