Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1ocofval Structured version   Visualization version   GIF version

Theorem setc1ocofval 49499
Description: Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
Hypothesis
Ref Expression
funcsetc1o.1 1 = (SetCat‘1o)
Assertion
Ref Expression
setc1ocofval {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )

Proof of Theorem setc1ocofval
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4588 . . 3 ⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩ = ⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩
21sneqi 4590 . 2 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩}
3 opex 5411 . . 3 ⟨∅, ∅⟩ ∈ V
4 0ex 5249 . . 3 ∅ ∈ V
5 snex 5378 . . 3 {⟨∅, ∅, ∅⟩} ∈ V
6 funcsetc1o.1 . . . . . . . 8 1 = (SetCat‘1o)
7 df1o2 8402 . . . . . . . . 9 1o = {∅}
87fveq2i 6829 . . . . . . . 8 (SetCat‘1o) = (SetCat‘{∅})
96, 8eqtri 2752 . . . . . . 7 1 = (SetCat‘{∅})
10 snex 5378 . . . . . . . 8 {∅} ∈ V
1110a1i 11 . . . . . . 7 (⊤ → {∅} ∈ V)
12 eqid 2729 . . . . . . 7 (comp‘ 1 ) = (comp‘ 1 )
139, 11, 12setccofval 18008 . . . . . 6 (⊤ → (comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1413mptru 1547 . . . . 5 (comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
154, 4xpsn 7079 . . . . . 6 ({∅} × {∅}) = {⟨∅, ∅⟩}
16 eqid 2729 . . . . . 6 {∅} = {∅}
17 eqid 2729 . . . . . 6 (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))
1815, 16, 17mpoeq123i 7429 . . . . 5 (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ {⟨∅, ∅⟩}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
1914, 18eqtri 2752 . . . 4 (comp‘ 1 ) = (𝑣 ∈ {⟨∅, ∅⟩}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
204, 4op2ndd 7942 . . . . . 6 (𝑣 = ⟨∅, ∅⟩ → (2nd𝑣) = ∅)
2120oveq2d 7369 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → (𝑧m (2nd𝑣)) = (𝑧m ∅))
224, 4op1std 7941 . . . . . . 7 (𝑣 = ⟨∅, ∅⟩ → (1st𝑣) = ∅)
2320, 22oveq12d 7371 . . . . . 6 (𝑣 = ⟨∅, ∅⟩ → ((2nd𝑣) ↑m (1st𝑣)) = (∅ ↑m ∅))
24 0map0sn0 8819 . . . . . 6 (∅ ↑m ∅) = {∅}
2523, 24eqtrdi 2780 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → ((2nd𝑣) ↑m (1st𝑣)) = {∅})
26 eqidd 2730 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → (𝑔𝑓) = (𝑔𝑓))
2721, 25, 26mpoeq123dv 7428 . . . 4 (𝑣 = ⟨∅, ∅⟩ → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)))
28 oveq1 7360 . . . . . . . 8 (𝑧 = ∅ → (𝑧m ∅) = (∅ ↑m ∅))
2928, 24eqtrdi 2780 . . . . . . 7 (𝑧 = ∅ → (𝑧m ∅) = {∅})
30 eqidd 2730 . . . . . . 7 (𝑧 = ∅ → {∅} = {∅})
31 eqidd 2730 . . . . . . 7 (𝑧 = ∅ → (𝑔𝑓) = (𝑔𝑓))
3229, 30, 31mpoeq123dv 7428 . . . . . 6 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)))
33 eqid 2729 . . . . . . . 8 (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓))
34 coeq1 5804 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑓) = (∅ ∘ 𝑓))
35 co01 6214 . . . . . . . . 9 (∅ ∘ 𝑓) = ∅
3634, 35eqtrdi 2780 . . . . . . . 8 (𝑔 = ∅ → (𝑔𝑓) = ∅)
37 eqidd 2730 . . . . . . . 8 (𝑓 = ∅ → ∅ = ∅)
3833, 36, 37mposn 8043 . . . . . . 7 ((∅ ∈ V ∧ ∅ ∈ V ∧ ∅ ∈ V) → (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩})
394, 4, 4, 38mp3an 1463 . . . . . 6 (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩}
4032, 39eqtrdi 2780 . . . . 5 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩})
41 df-ot 4588 . . . . . 6 ⟨∅, ∅, ∅⟩ = ⟨⟨∅, ∅⟩, ∅⟩
4241sneqi 4590 . . . . 5 {⟨∅, ∅, ∅⟩} = {⟨⟨∅, ∅⟩, ∅⟩}
4340, 42eqtr4di 2782 . . . 4 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨∅, ∅, ∅⟩})
4419, 27, 43mposn 8043 . . 3 ((⟨∅, ∅⟩ ∈ V ∧ ∅ ∈ V ∧ {⟨∅, ∅, ∅⟩} ∈ V) → (comp‘ 1 ) = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩})
453, 4, 5, 44mp3an 1463 . 2 (comp‘ 1 ) = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩}
462, 45eqtr4i 2755 1 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3438  c0 4286  {csn 4579  cop 4585  cotp 4587   × cxp 5621  ccom 5627  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  1oc1o 8388  m cmap 8760  compcco 17192  SetCatcsetc 18001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-setc 18002
This theorem is referenced by:  isinito2lem  49503  setc1onsubc  49607
  Copyright terms: Public domain W3C validator