| Step | Hyp | Ref
| Expression |
| 1 | | df-ot 4615 |
. . 3
⊢
〈〈∅, ∅〉, ∅, {〈∅, ∅,
∅〉}〉 = 〈〈〈∅, ∅〉, ∅〉,
{〈∅, ∅, ∅〉}〉 |
| 2 | 1 | sneqi 4617 |
. 2
⊢
{〈〈∅, ∅〉, ∅, {〈∅, ∅,
∅〉}〉} = {〈〈〈∅, ∅〉,
∅〉, {〈∅, ∅, ∅〉}〉} |
| 3 | | opex 5449 |
. . 3
⊢
〈∅, ∅〉 ∈ V |
| 4 | | 0ex 5287 |
. . 3
⊢ ∅
∈ V |
| 5 | | snex 5416 |
. . 3
⊢
{〈∅, ∅, ∅〉} ∈ V |
| 6 | | funcsetc1o.1 |
. . . . . . . 8
⊢ 1 =
(SetCat‘1o) |
| 7 | | df1o2 8495 |
. . . . . . . . 9
⊢
1o = {∅} |
| 8 | 7 | fveq2i 6889 |
. . . . . . . 8
⊢
(SetCat‘1o) = (SetCat‘{∅}) |
| 9 | 6, 8 | eqtri 2757 |
. . . . . . 7
⊢ 1 =
(SetCat‘{∅}) |
| 10 | | snex 5416 |
. . . . . . . 8
⊢ {∅}
∈ V |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ {∅} ∈ V) |
| 12 | | eqid 2734 |
. . . . . . 7
⊢
(comp‘ 1 ) = (comp‘ 1
) |
| 13 | 9, 11, 12 | setccofval 18099 |
. . . . . 6
⊢ (⊤
→ (comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
| 14 | 13 | mptru 1546 |
. . . . 5
⊢
(comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) |
| 15 | 4, 4 | xpsn 7141 |
. . . . . 6
⊢
({∅} × {∅}) = {〈∅,
∅〉} |
| 16 | | eqid 2734 |
. . . . . 6
⊢ {∅}
= {∅} |
| 17 | | eqid 2734 |
. . . . . 6
⊢ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) |
| 18 | 15, 16, 17 | mpoeq123i 7491 |
. . . . 5
⊢ (𝑣 ∈ ({∅} ×
{∅}), 𝑧 ∈
{∅} ↦ (𝑔 ∈
(𝑧 ↑m
(2nd ‘𝑣)),
𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ {〈∅, ∅〉}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) |
| 19 | 14, 18 | eqtri 2757 |
. . . 4
⊢
(comp‘ 1 ) = (𝑣 ∈ {〈∅, ∅〉}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) |
| 20 | 4, 4 | op2ndd 8007 |
. . . . . 6
⊢ (𝑣 = 〈∅, ∅〉
→ (2nd ‘𝑣) = ∅) |
| 21 | 20 | oveq2d 7429 |
. . . . 5
⊢ (𝑣 = 〈∅, ∅〉
→ (𝑧
↑m (2nd ‘𝑣)) = (𝑧 ↑m
∅)) |
| 22 | 4, 4 | op1std 8006 |
. . . . . . 7
⊢ (𝑣 = 〈∅, ∅〉
→ (1st ‘𝑣) = ∅) |
| 23 | 20, 22 | oveq12d 7431 |
. . . . . 6
⊢ (𝑣 = 〈∅, ∅〉
→ ((2nd ‘𝑣) ↑m (1st
‘𝑣)) = (∅
↑m ∅)) |
| 24 | | 0map0sn0 8907 |
. . . . . 6
⊢ (∅
↑m ∅) = {∅} |
| 25 | 23, 24 | eqtrdi 2785 |
. . . . 5
⊢ (𝑣 = 〈∅, ∅〉
→ ((2nd ‘𝑣) ↑m (1st
‘𝑣)) =
{∅}) |
| 26 | | eqidd 2735 |
. . . . 5
⊢ (𝑣 = 〈∅, ∅〉
→ (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) |
| 27 | 21, 25, 26 | mpoeq123dv 7490 |
. . . 4
⊢ (𝑣 = 〈∅, ∅〉
→ (𝑔 ∈ (𝑧 ↑m
(2nd ‘𝑣)),
𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑧 ↑m ∅), 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓))) |
| 28 | | oveq1 7420 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝑧 ↑m ∅) =
(∅ ↑m ∅)) |
| 29 | 28, 24 | eqtrdi 2785 |
. . . . . . 7
⊢ (𝑧 = ∅ → (𝑧 ↑m ∅) =
{∅}) |
| 30 | | eqidd 2735 |
. . . . . . 7
⊢ (𝑧 = ∅ → {∅} =
{∅}) |
| 31 | | eqidd 2735 |
. . . . . . 7
⊢ (𝑧 = ∅ → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) |
| 32 | 29, 30, 31 | mpoeq123dv 7490 |
. . . . . 6
⊢ (𝑧 = ∅ → (𝑔 ∈ (𝑧 ↑m ∅), 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓))) |
| 33 | | eqid 2734 |
. . . . . . . 8
⊢ (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) |
| 34 | | coeq1 5848 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → (𝑔 ∘ 𝑓) = (∅ ∘ 𝑓)) |
| 35 | | co01 6261 |
. . . . . . . . 9
⊢ (∅
∘ 𝑓) =
∅ |
| 36 | 34, 35 | eqtrdi 2785 |
. . . . . . . 8
⊢ (𝑔 = ∅ → (𝑔 ∘ 𝑓) = ∅) |
| 37 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝑓 = ∅ → ∅ =
∅) |
| 38 | 33, 36, 37 | mposn 8110 |
. . . . . . 7
⊢ ((∅
∈ V ∧ ∅ ∈ V ∧ ∅ ∈ V) → (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = {〈〈∅, ∅〉,
∅〉}) |
| 39 | 4, 4, 4, 38 | mp3an 1462 |
. . . . . 6
⊢ (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = {〈〈∅, ∅〉,
∅〉} |
| 40 | 32, 39 | eqtrdi 2785 |
. . . . 5
⊢ (𝑧 = ∅ → (𝑔 ∈ (𝑧 ↑m ∅), 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = {〈〈∅, ∅〉,
∅〉}) |
| 41 | | df-ot 4615 |
. . . . . 6
⊢
〈∅, ∅, ∅〉 = 〈〈∅,
∅〉, ∅〉 |
| 42 | 41 | sneqi 4617 |
. . . . 5
⊢
{〈∅, ∅, ∅〉} = {〈〈∅,
∅〉, ∅〉} |
| 43 | 40, 42 | eqtr4di 2787 |
. . . 4
⊢ (𝑧 = ∅ → (𝑔 ∈ (𝑧 ↑m ∅), 𝑓 ∈ {∅} ↦ (𝑔 ∘ 𝑓)) = {〈∅, ∅,
∅〉}) |
| 44 | 19, 27, 43 | mposn 8110 |
. . 3
⊢
((〈∅, ∅〉 ∈ V ∧ ∅ ∈ V ∧
{〈∅, ∅, ∅〉} ∈ V) → (comp‘ 1 ) =
{〈〈〈∅, ∅〉, ∅〉, {〈∅,
∅, ∅〉}〉}) |
| 45 | 3, 4, 5, 44 | mp3an 1462 |
. 2
⊢
(comp‘ 1 ) =
{〈〈〈∅, ∅〉, ∅〉, {〈∅,
∅, ∅〉}〉} |
| 46 | 2, 45 | eqtr4i 2760 |
1
⊢
{〈〈∅, ∅〉, ∅, {〈∅, ∅,
∅〉}〉} = (comp‘ 1 ) |