Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setc1ocofval Structured version   Visualization version   GIF version

Theorem setc1ocofval 49456
Description: Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
Hypothesis
Ref Expression
funcsetc1o.1 1 = (SetCat‘1o)
Assertion
Ref Expression
setc1ocofval {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )

Proof of Theorem setc1ocofval
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4594 . . 3 ⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩ = ⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩
21sneqi 4596 . 2 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩}
3 opex 5419 . . 3 ⟨∅, ∅⟩ ∈ V
4 0ex 5257 . . 3 ∅ ∈ V
5 snex 5386 . . 3 {⟨∅, ∅, ∅⟩} ∈ V
6 funcsetc1o.1 . . . . . . . 8 1 = (SetCat‘1o)
7 df1o2 8418 . . . . . . . . 9 1o = {∅}
87fveq2i 6843 . . . . . . . 8 (SetCat‘1o) = (SetCat‘{∅})
96, 8eqtri 2752 . . . . . . 7 1 = (SetCat‘{∅})
10 snex 5386 . . . . . . . 8 {∅} ∈ V
1110a1i 11 . . . . . . 7 (⊤ → {∅} ∈ V)
12 eqid 2729 . . . . . . 7 (comp‘ 1 ) = (comp‘ 1 )
139, 11, 12setccofval 18020 . . . . . 6 (⊤ → (comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1413mptru 1547 . . . . 5 (comp‘ 1 ) = (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
154, 4xpsn 7095 . . . . . 6 ({∅} × {∅}) = {⟨∅, ∅⟩}
16 eqid 2729 . . . . . 6 {∅} = {∅}
17 eqid 2729 . . . . . 6 (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))
1815, 16, 17mpoeq123i 7445 . . . . 5 (𝑣 ∈ ({∅} × {∅}), 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ {⟨∅, ∅⟩}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
1914, 18eqtri 2752 . . . 4 (comp‘ 1 ) = (𝑣 ∈ {⟨∅, ∅⟩}, 𝑧 ∈ {∅} ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
204, 4op2ndd 7958 . . . . . 6 (𝑣 = ⟨∅, ∅⟩ → (2nd𝑣) = ∅)
2120oveq2d 7385 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → (𝑧m (2nd𝑣)) = (𝑧m ∅))
224, 4op1std 7957 . . . . . . 7 (𝑣 = ⟨∅, ∅⟩ → (1st𝑣) = ∅)
2320, 22oveq12d 7387 . . . . . 6 (𝑣 = ⟨∅, ∅⟩ → ((2nd𝑣) ↑m (1st𝑣)) = (∅ ↑m ∅))
24 0map0sn0 8835 . . . . . 6 (∅ ↑m ∅) = {∅}
2523, 24eqtrdi 2780 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → ((2nd𝑣) ↑m (1st𝑣)) = {∅})
26 eqidd 2730 . . . . 5 (𝑣 = ⟨∅, ∅⟩ → (𝑔𝑓) = (𝑔𝑓))
2721, 25, 26mpoeq123dv 7444 . . . 4 (𝑣 = ⟨∅, ∅⟩ → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)))
28 oveq1 7376 . . . . . . . 8 (𝑧 = ∅ → (𝑧m ∅) = (∅ ↑m ∅))
2928, 24eqtrdi 2780 . . . . . . 7 (𝑧 = ∅ → (𝑧m ∅) = {∅})
30 eqidd 2730 . . . . . . 7 (𝑧 = ∅ → {∅} = {∅})
31 eqidd 2730 . . . . . . 7 (𝑧 = ∅ → (𝑔𝑓) = (𝑔𝑓))
3229, 30, 31mpoeq123dv 7444 . . . . . 6 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)))
33 eqid 2729 . . . . . . . 8 (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓))
34 coeq1 5811 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑓) = (∅ ∘ 𝑓))
35 co01 6222 . . . . . . . . 9 (∅ ∘ 𝑓) = ∅
3634, 35eqtrdi 2780 . . . . . . . 8 (𝑔 = ∅ → (𝑔𝑓) = ∅)
37 eqidd 2730 . . . . . . . 8 (𝑓 = ∅ → ∅ = ∅)
3833, 36, 37mposn 8059 . . . . . . 7 ((∅ ∈ V ∧ ∅ ∈ V ∧ ∅ ∈ V) → (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩})
394, 4, 4, 38mp3an 1463 . . . . . 6 (𝑔 ∈ {∅}, 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩}
4032, 39eqtrdi 2780 . . . . 5 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨⟨∅, ∅⟩, ∅⟩})
41 df-ot 4594 . . . . . 6 ⟨∅, ∅, ∅⟩ = ⟨⟨∅, ∅⟩, ∅⟩
4241sneqi 4596 . . . . 5 {⟨∅, ∅, ∅⟩} = {⟨⟨∅, ∅⟩, ∅⟩}
4340, 42eqtr4di 2782 . . . 4 (𝑧 = ∅ → (𝑔 ∈ (𝑧m ∅), 𝑓 ∈ {∅} ↦ (𝑔𝑓)) = {⟨∅, ∅, ∅⟩})
4419, 27, 43mposn 8059 . . 3 ((⟨∅, ∅⟩ ∈ V ∧ ∅ ∈ V ∧ {⟨∅, ∅, ∅⟩} ∈ V) → (comp‘ 1 ) = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩})
453, 4, 5, 44mp3an 1463 . 2 (comp‘ 1 ) = {⟨⟨⟨∅, ∅⟩, ∅⟩, {⟨∅, ∅, ∅⟩}⟩}
462, 45eqtr4i 2755 1 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444  c0 4292  {csn 4585  cop 4591  cotp 4593   × cxp 5629  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  1oc1o 8404  m cmap 8776  compcco 17208  SetCatcsetc 18013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-setc 18014
This theorem is referenced by:  isinito2lem  49460  setc1onsubc  49564
  Copyright terms: Public domain W3C validator